An analytical model for shale gas transport in circular tube pores

•A new model for gas transport in shale media is developed.•Reasonable weight coefficients and real gas effect are considered in the model.•The contribution of different flow mechanisms to total flow is analyzed comprehensively.•The effect of porosity, diameter and pressure on the apparent permeabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-12, Vol.127, p.321-328
Hauptverfasser: Tian, Shouceng, Wang, Tianyu, Li, Gensheng, Sheng, Mao, Liu, Qingling, Zhang, Shikun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue
container_start_page 321
container_title International journal of heat and mass transfer
container_volume 127
creator Tian, Shouceng
Wang, Tianyu
Li, Gensheng
Sheng, Mao
Liu, Qingling
Zhang, Shikun
description •A new model for gas transport in shale media is developed.•Reasonable weight coefficients and real gas effect are considered in the model.•The contribution of different flow mechanisms to total flow is analyzed comprehensively.•The effect of porosity, diameter and pressure on the apparent permeability is studied.•A sensitivity analysis is conducted to evaluate the impact of structural parameters. An analytical model for gas transport in shale media is proposed on the basis of the weighted superposition of slip flow, bulk diffusion and Knudsen diffusion. The model takes account of slip effect and real gas effect, and is successfully validated by experimental data and Lattice Boltzmann simulation results. The contribution of each transport mechanism to the total flow is investigated. The effect of porosity, diameter and pressure on the apparent permeability is studied and a sensitivity analysis is performed to evaluate the significance of the parameters for gas transport. The results show: (1) the present model can reasonably describe the process of the mass transform of all different gas transport mechanisms; (2) As pressure and pore diameter decrease, the number of molecule-wall collisions gradually predominates over the number of intermolecular collisions, Knudsen diffusion contributes more to the total flow; and (3) the apparent permeability increases with porosity, pore diameter, and decreases with pressure. It is more sensitive to pressure in rarefied gas flow regime, and pore diameter has a significant impact under high pressure. The present model can provide some theoretical support in numerical simulation of shale gas production.
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.07.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120900912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017347968</els_id><sourcerecordid>2120900912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-c75071889731789f4f58fa793c5f48b210f8a637edafec3e492a0519c55c6e9c3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwHyJx4dLi9CvJjTHxqUlc4BxlqcNSde1IUiT-PRnjxoWTZfvVI_sh5IpBzoA1113uug3quNUhRK-HYNHnBTCRA8-hao7IjAkus4IJeUxmAIxnsmRwSs5C6PZtCs3I7WKgetD9V3RG93Q7tthTO3oaNrpH-q4D_aHvRh-pG6hx3ky99jROa6RpiuGcnFjdB7z4rXPydn_3unzMVi8PT8vFKjMV8JgZXgNnQkheMi6krWwtrOayNLWtxLpgYIVuSo6ttmhKrGShoWbS1LVpUJpyTi4P3J0fPyYMUXXj5NPtQRWsAAkgWZFSN4eU8WMIHq3aebfV_ksxUHtzqlN_zam9OQVcJSkJ8XxAYPrm06VtMA4Hg63zaKJqR_d_2DddioNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120900912</pqid></control><display><type>article</type><title>An analytical model for shale gas transport in circular tube pores</title><source>Elsevier ScienceDirect Journals</source><creator>Tian, Shouceng ; Wang, Tianyu ; Li, Gensheng ; Sheng, Mao ; Liu, Qingling ; Zhang, Shikun</creator><creatorcontrib>Tian, Shouceng ; Wang, Tianyu ; Li, Gensheng ; Sheng, Mao ; Liu, Qingling ; Zhang, Shikun</creatorcontrib><description>•A new model for gas transport in shale media is developed.•Reasonable weight coefficients and real gas effect are considered in the model.•The contribution of different flow mechanisms to total flow is analyzed comprehensively.•The effect of porosity, diameter and pressure on the apparent permeability is studied.•A sensitivity analysis is conducted to evaluate the impact of structural parameters. An analytical model for gas transport in shale media is proposed on the basis of the weighted superposition of slip flow, bulk diffusion and Knudsen diffusion. The model takes account of slip effect and real gas effect, and is successfully validated by experimental data and Lattice Boltzmann simulation results. The contribution of each transport mechanism to the total flow is investigated. The effect of porosity, diameter and pressure on the apparent permeability is studied and a sensitivity analysis is performed to evaluate the significance of the parameters for gas transport. The results show: (1) the present model can reasonably describe the process of the mass transform of all different gas transport mechanisms; (2) As pressure and pore diameter decrease, the number of molecule-wall collisions gradually predominates over the number of intermolecular collisions, Knudsen diffusion contributes more to the total flow; and (3) the apparent permeability increases with porosity, pore diameter, and decreases with pressure. It is more sensitive to pressure in rarefied gas flow regime, and pore diameter has a significant impact under high pressure. The present model can provide some theoretical support in numerical simulation of shale gas production.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.07.046</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bulk diffusion ; Circular tubes ; Collisions ; Computational fluid dynamics ; Computer simulation ; Diffusion ; Gas flow ; Gas transport ; Knudsen diffusion ; Mathematical models ; Oil shale ; Parameter sensitivity ; Permeability ; Porosity ; Rarefied gases ; Real gas ; Real gases ; Sensitivity analysis ; Shale gas ; Shale nanopores ; Slip flow ; Superposition (mathematics)</subject><ispartof>International journal of heat and mass transfer, 2018-12, Vol.127, p.321-328</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-c75071889731789f4f58fa793c5f48b210f8a637edafec3e492a0519c55c6e9c3</citedby><cites>FETCH-LOGICAL-c407t-c75071889731789f4f58fa793c5f48b210f8a637edafec3e492a0519c55c6e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931017347968$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tian, Shouceng</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Li, Gensheng</creatorcontrib><creatorcontrib>Sheng, Mao</creatorcontrib><creatorcontrib>Liu, Qingling</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><title>An analytical model for shale gas transport in circular tube pores</title><title>International journal of heat and mass transfer</title><description>•A new model for gas transport in shale media is developed.•Reasonable weight coefficients and real gas effect are considered in the model.•The contribution of different flow mechanisms to total flow is analyzed comprehensively.•The effect of porosity, diameter and pressure on the apparent permeability is studied.•A sensitivity analysis is conducted to evaluate the impact of structural parameters. An analytical model for gas transport in shale media is proposed on the basis of the weighted superposition of slip flow, bulk diffusion and Knudsen diffusion. The model takes account of slip effect and real gas effect, and is successfully validated by experimental data and Lattice Boltzmann simulation results. The contribution of each transport mechanism to the total flow is investigated. The effect of porosity, diameter and pressure on the apparent permeability is studied and a sensitivity analysis is performed to evaluate the significance of the parameters for gas transport. The results show: (1) the present model can reasonably describe the process of the mass transform of all different gas transport mechanisms; (2) As pressure and pore diameter decrease, the number of molecule-wall collisions gradually predominates over the number of intermolecular collisions, Knudsen diffusion contributes more to the total flow; and (3) the apparent permeability increases with porosity, pore diameter, and decreases with pressure. It is more sensitive to pressure in rarefied gas flow regime, and pore diameter has a significant impact under high pressure. The present model can provide some theoretical support in numerical simulation of shale gas production.</description><subject>Bulk diffusion</subject><subject>Circular tubes</subject><subject>Collisions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Gas flow</subject><subject>Gas transport</subject><subject>Knudsen diffusion</subject><subject>Mathematical models</subject><subject>Oil shale</subject><subject>Parameter sensitivity</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Rarefied gases</subject><subject>Real gas</subject><subject>Real gases</subject><subject>Sensitivity analysis</subject><subject>Shale gas</subject><subject>Shale nanopores</subject><subject>Slip flow</subject><subject>Superposition (mathematics)</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwHyJx4dLi9CvJjTHxqUlc4BxlqcNSde1IUiT-PRnjxoWTZfvVI_sh5IpBzoA1113uug3quNUhRK-HYNHnBTCRA8-hao7IjAkus4IJeUxmAIxnsmRwSs5C6PZtCs3I7WKgetD9V3RG93Q7tthTO3oaNrpH-q4D_aHvRh-pG6hx3ky99jROa6RpiuGcnFjdB7z4rXPydn_3unzMVi8PT8vFKjMV8JgZXgNnQkheMi6krWwtrOayNLWtxLpgYIVuSo6ttmhKrGShoWbS1LVpUJpyTi4P3J0fPyYMUXXj5NPtQRWsAAkgWZFSN4eU8WMIHq3aebfV_ksxUHtzqlN_zam9OQVcJSkJ8XxAYPrm06VtMA4Hg63zaKJqR_d_2DddioNi</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tian, Shouceng</creator><creator>Wang, Tianyu</creator><creator>Li, Gensheng</creator><creator>Sheng, Mao</creator><creator>Liu, Qingling</creator><creator>Zhang, Shikun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20181201</creationdate><title>An analytical model for shale gas transport in circular tube pores</title><author>Tian, Shouceng ; Wang, Tianyu ; Li, Gensheng ; Sheng, Mao ; Liu, Qingling ; Zhang, Shikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-c75071889731789f4f58fa793c5f48b210f8a637edafec3e492a0519c55c6e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bulk diffusion</topic><topic>Circular tubes</topic><topic>Collisions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Gas flow</topic><topic>Gas transport</topic><topic>Knudsen diffusion</topic><topic>Mathematical models</topic><topic>Oil shale</topic><topic>Parameter sensitivity</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Rarefied gases</topic><topic>Real gas</topic><topic>Real gases</topic><topic>Sensitivity analysis</topic><topic>Shale gas</topic><topic>Shale nanopores</topic><topic>Slip flow</topic><topic>Superposition (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Shouceng</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Li, Gensheng</creatorcontrib><creatorcontrib>Sheng, Mao</creatorcontrib><creatorcontrib>Liu, Qingling</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Shouceng</au><au>Wang, Tianyu</au><au>Li, Gensheng</au><au>Sheng, Mao</au><au>Liu, Qingling</au><au>Zhang, Shikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model for shale gas transport in circular tube pores</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>127</volume><spage>321</spage><epage>328</epage><pages>321-328</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A new model for gas transport in shale media is developed.•Reasonable weight coefficients and real gas effect are considered in the model.•The contribution of different flow mechanisms to total flow is analyzed comprehensively.•The effect of porosity, diameter and pressure on the apparent permeability is studied.•A sensitivity analysis is conducted to evaluate the impact of structural parameters. An analytical model for gas transport in shale media is proposed on the basis of the weighted superposition of slip flow, bulk diffusion and Knudsen diffusion. The model takes account of slip effect and real gas effect, and is successfully validated by experimental data and Lattice Boltzmann simulation results. The contribution of each transport mechanism to the total flow is investigated. The effect of porosity, diameter and pressure on the apparent permeability is studied and a sensitivity analysis is performed to evaluate the significance of the parameters for gas transport. The results show: (1) the present model can reasonably describe the process of the mass transform of all different gas transport mechanisms; (2) As pressure and pore diameter decrease, the number of molecule-wall collisions gradually predominates over the number of intermolecular collisions, Knudsen diffusion contributes more to the total flow; and (3) the apparent permeability increases with porosity, pore diameter, and decreases with pressure. It is more sensitive to pressure in rarefied gas flow regime, and pore diameter has a significant impact under high pressure. The present model can provide some theoretical support in numerical simulation of shale gas production.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.07.046</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-12, Vol.127, p.321-328
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2120900912
source Elsevier ScienceDirect Journals
subjects Bulk diffusion
Circular tubes
Collisions
Computational fluid dynamics
Computer simulation
Diffusion
Gas flow
Gas transport
Knudsen diffusion
Mathematical models
Oil shale
Parameter sensitivity
Permeability
Porosity
Rarefied gases
Real gas
Real gases
Sensitivity analysis
Shale gas
Shale nanopores
Slip flow
Superposition (mathematics)
title An analytical model for shale gas transport in circular tube pores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20for%20shale%20gas%20transport%20in%20circular%20tube%20pores&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Tian,%20Shouceng&rft.date=2018-12-01&rft.volume=127&rft.spage=321&rft.epage=328&rft.pages=321-328&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.07.046&rft_dat=%3Cproquest_cross%3E2120900912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120900912&rft_id=info:pmid/&rft_els_id=S0017931017347968&rfr_iscdi=true