A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model

•A modified two-equation turbulent model with buoyancy effect correction was proposed.•Production of turbulent kinetic energy and turbulent thermal diffusion were accounted.•The modified model showed good prediction in heat transfer deterioration cases.•The value of Prt in the buffer layer is essent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-12, Vol.127, p.257-267
Hauptverfasser: Jiang, Pei-Xue, Wang, Zhen-Chuan, Xu, Rui-Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue
container_start_page 257
container_title International journal of heat and mass transfer
container_volume 127
creator Jiang, Pei-Xue
Wang, Zhen-Chuan
Xu, Rui-Na
description •A modified two-equation turbulent model with buoyancy effect correction was proposed.•Production of turbulent kinetic energy and turbulent thermal diffusion were accounted.•The modified model showed good prediction in heat transfer deterioration cases.•The value of Prt in the buffer layer is essential for the model accuracy. The performance of the turbulent flow model for predicting the buoyancy effect on convective heat transfer of supercritical fluid is severely affected by strongly varying thermal physical properties near the pseudo-critical point. Over-prediction is attributed, at least partly, to the misuse of the constantly turbulent Prandtl number for the turbulent heat flux in the turbulence model. A method that considers the anisotropic turbulent heat flux has been proposed to improve the prediction accuracy of numerical simulation. A buoyancy effect model that accounts for the production of turbulent kinetic energy and a turbulent Prandtl number model accounting for turbulent thermal diffusion, which are both based on the anisotropic turbulent heat flux model, was adopted in the original AKN k-ε model. Experimental results and direct numerical simulations (DNS) data were used to validate the performance of the “Modified model.” The “Modified model” produced accurate predictions for all heat transfer deterioration cases examined in the present paper. The buoyancy effect model reflects the basic mechanism of heat transfer deterioration and recovery due to accurate predictions of turbulent kinetic energy. The value of Prt in the buffer layer obtained with the turbulent Prandtl number model is essential for accurate reproductions of experimental data.
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.07.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120900328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018316703</els_id><sourcerecordid>2120900328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ba9b4c5f28c3daca6ea1d8b1e194669e8e9f3f33f77566ea7f90eae2707683183</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78h4AXL62TZm2am4v4iSj4cQ5pOsGUbrMmrbB_wN9t6q4nL55mhnd435mHkFMGOQNWnrW5a99RD0sd4xB0Hy2GvABW5SBymBc7ZMYqIbOCVXKXzACYyCRnsE8OYmynEebljHwt6NI3zjpsaD36te7NmqK1aAZqfAipOt_TJQ7vvqGpG8ZQjx32k9x_buXpEPp7BfWWxnGFwQQ3OKM7ugoY4xiQ2m50KUdH_PF6Xjy-TPHYHZE9q7uIx9t6SN6ur14vb7OHp5u7y8VDZriAIau1rOfm3BaV4Y02ukTNmqpmyOS8LCVWKC23nFshzsskCisBNRYCRFlxVvFDcrLxXQX_MWIcVOvH0KdIVbACJAAvpq2LzZYJPsaAVq2CW-qwVgzURF-16i99NdFXIFSinyzuNxaYvvl0SY3GYW-wcRNT1Xj3f7NveK-d_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120900328</pqid></control><display><type>article</type><title>A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Pei-Xue ; Wang, Zhen-Chuan ; Xu, Rui-Na</creator><creatorcontrib>Jiang, Pei-Xue ; Wang, Zhen-Chuan ; Xu, Rui-Na</creatorcontrib><description>•A modified two-equation turbulent model with buoyancy effect correction was proposed.•Production of turbulent kinetic energy and turbulent thermal diffusion were accounted.•The modified model showed good prediction in heat transfer deterioration cases.•The value of Prt in the buffer layer is essential for the model accuracy. The performance of the turbulent flow model for predicting the buoyancy effect on convective heat transfer of supercritical fluid is severely affected by strongly varying thermal physical properties near the pseudo-critical point. Over-prediction is attributed, at least partly, to the misuse of the constantly turbulent Prandtl number for the turbulent heat flux in the turbulence model. A method that considers the anisotropic turbulent heat flux has been proposed to improve the prediction accuracy of numerical simulation. A buoyancy effect model that accounts for the production of turbulent kinetic energy and a turbulent Prandtl number model accounting for turbulent thermal diffusion, which are both based on the anisotropic turbulent heat flux model, was adopted in the original AKN k-ε model. Experimental results and direct numerical simulations (DNS) data were used to validate the performance of the “Modified model.” The “Modified model” produced accurate predictions for all heat transfer deterioration cases examined in the present paper. The buoyancy effect model reflects the basic mechanism of heat transfer deterioration and recovery due to accurate predictions of turbulent kinetic energy. The value of Prt in the buffer layer obtained with the turbulent Prandtl number model is essential for accurate reproductions of experimental data.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.07.042</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anisotropy ; Buffer layers ; Buoyancy ; Buoyancy effect ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Critical point ; Deterioration ; Fluid flow ; Heat flux ; Heat recovery ; Heat transfer ; Kinetic energy ; Mathematical models ; Physical properties ; Prandtl number ; Predictions ; Pressure ; Supercritical fluids ; Supercritical pressure ; Supercritical pressures ; Thermal diffusion ; Turbulence ; Turbulence model ; Turbulent flow ; Turbulent Prandtl number</subject><ispartof>International journal of heat and mass transfer, 2018-12, Vol.127, p.257-267</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-ba9b4c5f28c3daca6ea1d8b1e194669e8e9f3f33f77566ea7f90eae2707683183</citedby><cites>FETCH-LOGICAL-c370t-ba9b4c5f28c3daca6ea1d8b1e194669e8e9f3f33f77566ea7f90eae2707683183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931018316703$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jiang, Pei-Xue</creatorcontrib><creatorcontrib>Wang, Zhen-Chuan</creatorcontrib><creatorcontrib>Xu, Rui-Na</creatorcontrib><title>A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model</title><title>International journal of heat and mass transfer</title><description>•A modified two-equation turbulent model with buoyancy effect correction was proposed.•Production of turbulent kinetic energy and turbulent thermal diffusion were accounted.•The modified model showed good prediction in heat transfer deterioration cases.•The value of Prt in the buffer layer is essential for the model accuracy. The performance of the turbulent flow model for predicting the buoyancy effect on convective heat transfer of supercritical fluid is severely affected by strongly varying thermal physical properties near the pseudo-critical point. Over-prediction is attributed, at least partly, to the misuse of the constantly turbulent Prandtl number for the turbulent heat flux in the turbulence model. A method that considers the anisotropic turbulent heat flux has been proposed to improve the prediction accuracy of numerical simulation. A buoyancy effect model that accounts for the production of turbulent kinetic energy and a turbulent Prandtl number model accounting for turbulent thermal diffusion, which are both based on the anisotropic turbulent heat flux model, was adopted in the original AKN k-ε model. Experimental results and direct numerical simulations (DNS) data were used to validate the performance of the “Modified model.” The “Modified model” produced accurate predictions for all heat transfer deterioration cases examined in the present paper. The buoyancy effect model reflects the basic mechanism of heat transfer deterioration and recovery due to accurate predictions of turbulent kinetic energy. The value of Prt in the buffer layer obtained with the turbulent Prandtl number model is essential for accurate reproductions of experimental data.</description><subject>Anisotropy</subject><subject>Buffer layers</subject><subject>Buoyancy</subject><subject>Buoyancy effect</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Critical point</subject><subject>Deterioration</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Physical properties</subject><subject>Prandtl number</subject><subject>Predictions</subject><subject>Pressure</subject><subject>Supercritical fluids</subject><subject>Supercritical pressure</subject><subject>Supercritical pressures</subject><subject>Thermal diffusion</subject><subject>Turbulence</subject><subject>Turbulence model</subject><subject>Turbulent flow</subject><subject>Turbulent Prandtl number</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouH78h4AXL62TZm2am4v4iSj4cQ5pOsGUbrMmrbB_wN9t6q4nL55mhnd435mHkFMGOQNWnrW5a99RD0sd4xB0Hy2GvABW5SBymBc7ZMYqIbOCVXKXzACYyCRnsE8OYmynEebljHwt6NI3zjpsaD36te7NmqK1aAZqfAipOt_TJQ7vvqGpG8ZQjx32k9x_buXpEPp7BfWWxnGFwQQ3OKM7ugoY4xiQ2m50KUdH_PF6Xjy-TPHYHZE9q7uIx9t6SN6ur14vb7OHp5u7y8VDZriAIau1rOfm3BaV4Y02ukTNmqpmyOS8LCVWKC23nFshzsskCisBNRYCRFlxVvFDcrLxXQX_MWIcVOvH0KdIVbACJAAvpq2LzZYJPsaAVq2CW-qwVgzURF-16i99NdFXIFSinyzuNxaYvvl0SY3GYW-wcRNT1Xj3f7NveK-d_A</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Jiang, Pei-Xue</creator><creator>Wang, Zhen-Chuan</creator><creator>Xu, Rui-Na</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201812</creationdate><title>A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model</title><author>Jiang, Pei-Xue ; Wang, Zhen-Chuan ; Xu, Rui-Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ba9b4c5f28c3daca6ea1d8b1e194669e8e9f3f33f77566ea7f90eae2707683183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Buffer layers</topic><topic>Buoyancy</topic><topic>Buoyancy effect</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Critical point</topic><topic>Deterioration</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Physical properties</topic><topic>Prandtl number</topic><topic>Predictions</topic><topic>Pressure</topic><topic>Supercritical fluids</topic><topic>Supercritical pressure</topic><topic>Supercritical pressures</topic><topic>Thermal diffusion</topic><topic>Turbulence</topic><topic>Turbulence model</topic><topic>Turbulent flow</topic><topic>Turbulent Prandtl number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Pei-Xue</creatorcontrib><creatorcontrib>Wang, Zhen-Chuan</creatorcontrib><creatorcontrib>Xu, Rui-Na</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Pei-Xue</au><au>Wang, Zhen-Chuan</au><au>Xu, Rui-Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-12</date><risdate>2018</risdate><volume>127</volume><spage>257</spage><epage>267</epage><pages>257-267</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A modified two-equation turbulent model with buoyancy effect correction was proposed.•Production of turbulent kinetic energy and turbulent thermal diffusion were accounted.•The modified model showed good prediction in heat transfer deterioration cases.•The value of Prt in the buffer layer is essential for the model accuracy. The performance of the turbulent flow model for predicting the buoyancy effect on convective heat transfer of supercritical fluid is severely affected by strongly varying thermal physical properties near the pseudo-critical point. Over-prediction is attributed, at least partly, to the misuse of the constantly turbulent Prandtl number for the turbulent heat flux in the turbulence model. A method that considers the anisotropic turbulent heat flux has been proposed to improve the prediction accuracy of numerical simulation. A buoyancy effect model that accounts for the production of turbulent kinetic energy and a turbulent Prandtl number model accounting for turbulent thermal diffusion, which are both based on the anisotropic turbulent heat flux model, was adopted in the original AKN k-ε model. Experimental results and direct numerical simulations (DNS) data were used to validate the performance of the “Modified model.” The “Modified model” produced accurate predictions for all heat transfer deterioration cases examined in the present paper. The buoyancy effect model reflects the basic mechanism of heat transfer deterioration and recovery due to accurate predictions of turbulent kinetic energy. The value of Prt in the buffer layer obtained with the turbulent Prandtl number model is essential for accurate reproductions of experimental data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.07.042</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-12, Vol.127, p.257-267
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2120900328
source Elsevier ScienceDirect Journals
subjects Anisotropy
Buffer layers
Buoyancy
Buoyancy effect
Computational fluid dynamics
Computer simulation
Convective heat transfer
Critical point
Deterioration
Fluid flow
Heat flux
Heat recovery
Heat transfer
Kinetic energy
Mathematical models
Physical properties
Prandtl number
Predictions
Pressure
Supercritical fluids
Supercritical pressure
Supercritical pressures
Thermal diffusion
Turbulence
Turbulence model
Turbulent flow
Turbulent Prandtl number
title A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20buoyancy%20effect%20correction%20method%20on%20turbulent%20convection%20heat%20transfer%20of%20supercritical%20pressure%20fluid%20based%20on%20RANS%20model&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Jiang,%20Pei-Xue&rft.date=2018-12&rft.volume=127&rft.spage=257&rft.epage=267&rft.pages=257-267&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.07.042&rft_dat=%3Cproquest_cross%3E2120900328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120900328&rft_id=info:pmid/&rft_els_id=S0017931018316703&rfr_iscdi=true