Image Denoising by using Modified SGHP Algorithm

In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2018-04, Vol.8 (2), p.971
Hauptverfasser: Kollem, Sreedhar, Reddy, K. Ramalinga, Rao, D. Sreenivasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 971
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 8
creator Kollem, Sreedhar
Reddy, K. Ramalinga
Rao, D. Sreenivasa
description In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.
doi_str_mv 10.11591/ijece.v8i2.pp971-978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120830196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120830196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1918-e3a23f6341566b8072ca72b0993719d90062028c6417d71b6fa9b5581fa211013</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNT-BCHgOvHemWYey1K1LVQU1PUwSSZxQvNwphH6742pC-_mnMXhHO5HyC1CgpgqvHe1zW3yLR1N-l4JjJWQF2RGQcpYCpCX__w1WYRQw3iSc6rSGYFdYyobPdi2c8G1VZSdomEyz13hSmeL6G2zfY1Wh6rz7vjZ3JCr0hyCXfzpnHw8Pb6vt_H-ZbNbr_ZxjgplbJmhrORsiSnnmQRBcyNoBkoxgapQAJwClTlfoigEZrw0KktTiaWhiIBsTu7Ovb3vvgYbjrruBt-Ok5ri-BADVHxMpedU7rsQvC11711j_Ekj6ImPnvjoXz564qNHPuwHREtX5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120830196</pqid></control><display><type>article</type><title>Image Denoising by using Modified SGHP Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</creator><creatorcontrib>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</creatorcontrib><description>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v8i2.pp971-978</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Algorithms ; Histograms ; Noise measurement ; Noise reduction ; Parameter modification ; Preservation ; Signal to noise ratio ; Similarity</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2018-04, Vol.8 (2), p.971</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Apr 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kollem, Sreedhar</creatorcontrib><creatorcontrib>Reddy, K. Ramalinga</creatorcontrib><creatorcontrib>Rao, D. Sreenivasa</creatorcontrib><title>Image Denoising by using Modified SGHP Algorithm</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</description><subject>Algorithms</subject><subject>Histograms</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Parameter modification</subject><subject>Preservation</subject><subject>Signal to noise ratio</subject><subject>Similarity</subject><issn>2088-8708</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLw0AUhQdRsNT-BCHgOvHemWYey1K1LVQU1PUwSSZxQvNwphH6742pC-_mnMXhHO5HyC1CgpgqvHe1zW3yLR1N-l4JjJWQF2RGQcpYCpCX__w1WYRQw3iSc6rSGYFdYyobPdi2c8G1VZSdomEyz13hSmeL6G2zfY1Wh6rz7vjZ3JCr0hyCXfzpnHw8Pb6vt_H-ZbNbr_ZxjgplbJmhrORsiSnnmQRBcyNoBkoxgapQAJwClTlfoigEZrw0KktTiaWhiIBsTu7Ovb3vvgYbjrruBt-Ok5ri-BADVHxMpedU7rsQvC11711j_Ekj6ImPnvjoXz564qNHPuwHREtX5w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Kollem, Sreedhar</creator><creator>Reddy, K. Ramalinga</creator><creator>Rao, D. Sreenivasa</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Image Denoising by using Modified SGHP Algorithm</title><author>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1918-e3a23f6341566b8072ca72b0993719d90062028c6417d71b6fa9b5581fa211013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Histograms</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Parameter modification</topic><topic>Preservation</topic><topic>Signal to noise ratio</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kollem, Sreedhar</creatorcontrib><creatorcontrib>Reddy, K. Ramalinga</creatorcontrib><creatorcontrib>Rao, D. Sreenivasa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollem, Sreedhar</au><au>Reddy, K. Ramalinga</au><au>Rao, D. Sreenivasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Denoising by using Modified SGHP Algorithm</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>2</issue><spage>971</spage><pages>971-</pages><issn>2088-8708</issn><eissn>2088-8708</eissn><abstract>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v8i2.pp971-978</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2018-04, Vol.8 (2), p.971
issn 2088-8708
2088-8708
language eng
recordid cdi_proquest_journals_2120830196
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Histograms
Noise measurement
Noise reduction
Parameter modification
Preservation
Signal to noise ratio
Similarity
title Image Denoising by using Modified SGHP Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Denoising%20by%20using%20Modified%20SGHP%20Algorithm&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Kollem,%20Sreedhar&rft.date=2018-04-01&rft.volume=8&rft.issue=2&rft.spage=971&rft.pages=971-&rft.issn=2088-8708&rft.eissn=2088-8708&rft_id=info:doi/10.11591/ijece.v8i2.pp971-978&rft_dat=%3Cproquest_cross%3E2120830196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120830196&rft_id=info:pmid/&rfr_iscdi=true