Image Denoising by using Modified SGHP Algorithm
In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspe...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2018-04, Vol.8 (2), p.971 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 971 |
container_title | International journal of electrical and computer engineering (Malacca, Malacca) |
container_volume | 8 |
creator | Kollem, Sreedhar Reddy, K. Ramalinga Rao, D. Sreenivasa |
description | In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image. |
doi_str_mv | 10.11591/ijece.v8i2.pp971-978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120830196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120830196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1918-e3a23f6341566b8072ca72b0993719d90062028c6417d71b6fa9b5581fa211013</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNT-BCHgOvHemWYey1K1LVQU1PUwSSZxQvNwphH6742pC-_mnMXhHO5HyC1CgpgqvHe1zW3yLR1N-l4JjJWQF2RGQcpYCpCX__w1WYRQw3iSc6rSGYFdYyobPdi2c8G1VZSdomEyz13hSmeL6G2zfY1Wh6rz7vjZ3JCr0hyCXfzpnHw8Pb6vt_H-ZbNbr_ZxjgplbJmhrORsiSnnmQRBcyNoBkoxgapQAJwClTlfoigEZrw0KktTiaWhiIBsTu7Ovb3vvgYbjrruBt-Ok5ri-BADVHxMpedU7rsQvC11711j_Ekj6ImPnvjoXz564qNHPuwHREtX5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120830196</pqid></control><display><type>article</type><title>Image Denoising by using Modified SGHP Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</creator><creatorcontrib>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</creatorcontrib><description>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v8i2.pp971-978</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Algorithms ; Histograms ; Noise measurement ; Noise reduction ; Parameter modification ; Preservation ; Signal to noise ratio ; Similarity</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2018-04, Vol.8 (2), p.971</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Apr 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kollem, Sreedhar</creatorcontrib><creatorcontrib>Reddy, K. Ramalinga</creatorcontrib><creatorcontrib>Rao, D. Sreenivasa</creatorcontrib><title>Image Denoising by using Modified SGHP Algorithm</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</description><subject>Algorithms</subject><subject>Histograms</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Parameter modification</subject><subject>Preservation</subject><subject>Signal to noise ratio</subject><subject>Similarity</subject><issn>2088-8708</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLw0AUhQdRsNT-BCHgOvHemWYey1K1LVQU1PUwSSZxQvNwphH6742pC-_mnMXhHO5HyC1CgpgqvHe1zW3yLR1N-l4JjJWQF2RGQcpYCpCX__w1WYRQw3iSc6rSGYFdYyobPdi2c8G1VZSdomEyz13hSmeL6G2zfY1Wh6rz7vjZ3JCr0hyCXfzpnHw8Pb6vt_H-ZbNbr_ZxjgplbJmhrORsiSnnmQRBcyNoBkoxgapQAJwClTlfoigEZrw0KktTiaWhiIBsTu7Ovb3vvgYbjrruBt-Ok5ri-BADVHxMpedU7rsQvC11711j_Ekj6ImPnvjoXz564qNHPuwHREtX5w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Kollem, Sreedhar</creator><creator>Reddy, K. Ramalinga</creator><creator>Rao, D. Sreenivasa</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Image Denoising by using Modified SGHP Algorithm</title><author>Kollem, Sreedhar ; Reddy, K. Ramalinga ; Rao, D. Sreenivasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1918-e3a23f6341566b8072ca72b0993719d90062028c6417d71b6fa9b5581fa211013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Histograms</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Parameter modification</topic><topic>Preservation</topic><topic>Signal to noise ratio</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kollem, Sreedhar</creatorcontrib><creatorcontrib>Reddy, K. Ramalinga</creatorcontrib><creatorcontrib>Rao, D. Sreenivasa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollem, Sreedhar</au><au>Reddy, K. Ramalinga</au><au>Rao, D. Sreenivasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Denoising by using Modified SGHP Algorithm</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>2</issue><spage>971</spage><pages>971-</pages><issn>2088-8708</issn><eissn>2088-8708</eissn><abstract>In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v8i2.pp971-978</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2088-8708 |
ispartof | International journal of electrical and computer engineering (Malacca, Malacca), 2018-04, Vol.8 (2), p.971 |
issn | 2088-8708 2088-8708 |
language | eng |
recordid | cdi_proquest_journals_2120830196 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Histograms Noise measurement Noise reduction Parameter modification Preservation Signal to noise ratio Similarity |
title | Image Denoising by using Modified SGHP Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Denoising%20by%20using%20Modified%20SGHP%20Algorithm&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Kollem,%20Sreedhar&rft.date=2018-04-01&rft.volume=8&rft.issue=2&rft.spage=971&rft.pages=971-&rft.issn=2088-8708&rft.eissn=2088-8708&rft_id=info:doi/10.11591/ijece.v8i2.pp971-978&rft_dat=%3Cproquest_cross%3E2120830196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120830196&rft_id=info:pmid/&rfr_iscdi=true |