On the two components of wind-driven ocean surface stress with extension to scalar fluxes

When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to do so is uncertain. The two surface forcing processes, a result of turbulent atmospheric flow over waves, are boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean dynamics 2019-01, Vol.69 (1), p.43-50
1. Verfasser: Mellor, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 43
container_title Ocean dynamics
container_volume 69
creator Mellor, George
description When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to do so is uncertain. The two surface forcing processes, a result of turbulent atmospheric flow over waves, are boundary conditions for momentum transfer into the water column. The surface energy flux related to form drag is that which drives surface waves. As in other fluid dynamic flows where viscous and/or pressure stresses are involved, one supposes there exists a relevant Reynolds number. In this paper, we begin with the rather definitive near-wall data of Nikuradse, governed by a wall Reynolds number, and progress to equations useful for air flow over ocean surface waves for which reference is made to a consensus of formulas, resident in the literature, for drag coefficient versus wind speed. The processes of momentum transfer and the transfer of heat and water vapor across the air-sea interface differ. The governing equations of the latter scalar quantities do not contain pressure, and therefore, form drag is excluded. A detailed study of bulk coefficients for heat and water vapor transfer which includes low wind speed show that the bulk coefficients are nearly constants as a function of wind speed in accordance with observations. For greatest precision, neutral bulk coefficients presented here should be corrected for density stratification (Large and Pond 1982 ).
doi_str_mv 10.1007/s10236-018-1228-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120682560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120682560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-48313da615d5d1727220836ef8b999a7b389f1114e852876571f108d176137b63</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHckrlEuzACzNI1_SZNudOGK0Bmw07RQgbH17cWMxpUrLsn5vntzELoEeg2UypsElHFBKCgCjCkij9AEBAgiy-_4d-YVnKKzlNaUghQVm6DXhcd5ZXHeB9yG7S5463PCweF97zvSxf7DehxaazxOQ3SmtTjlaFMqQF5he8jWpz6UloBTazYmYrcZDjadoxNnNsle_LxT9HJ_9zx7JPPFw9Psdk5aDiKTSnHgnRFQd3UHkpV7qeLCOrVsmsbIJVeNA4DKqpopKWoJDqgqqAAul4JP0dXYu4vhfbAp63UYoi8rNQNGhWK1oIWCkWpjSClap3ex35r4qYHqb4N6NKiLQf1tUMuSYWMmFda_2fjX_H_oC6wkchk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120682560</pqid></control><display><type>article</type><title>On the two components of wind-driven ocean surface stress with extension to scalar fluxes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mellor, George</creator><creatorcontrib>Mellor, George</creatorcontrib><description>When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to do so is uncertain. The two surface forcing processes, a result of turbulent atmospheric flow over waves, are boundary conditions for momentum transfer into the water column. The surface energy flux related to form drag is that which drives surface waves. As in other fluid dynamic flows where viscous and/or pressure stresses are involved, one supposes there exists a relevant Reynolds number. In this paper, we begin with the rather definitive near-wall data of Nikuradse, governed by a wall Reynolds number, and progress to equations useful for air flow over ocean surface waves for which reference is made to a consensus of formulas, resident in the literature, for drag coefficient versus wind speed. The processes of momentum transfer and the transfer of heat and water vapor across the air-sea interface differ. The governing equations of the latter scalar quantities do not contain pressure, and therefore, form drag is excluded. A detailed study of bulk coefficients for heat and water vapor transfer which includes low wind speed show that the bulk coefficients are nearly constants as a function of wind speed in accordance with observations. For greatest precision, neutral bulk coefficients presented here should be corrected for density stratification (Large and Pond 1982 ).</description><identifier>ISSN: 1616-7341</identifier><identifier>EISSN: 1616-7228</identifier><identifier>DOI: 10.1007/s10236-018-1228-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>25-28 June 2018 ; Aerodynamics ; Air flow ; Atmospheric models ; Atmospheric Sciences ; Boundary conditions ; Brazil ; Bulk density ; Computational fluid dynamics ; Constants ; Density stratification ; Drag ; Drag coefficient ; Drag coefficients ; Earth and Environmental Science ; Earth Sciences ; Energy flux ; Energy transfer ; Fluid flow ; Fluid- and Aerodynamics ; Fluxes ; Form drag ; Geophysics/Geodesy ; Mathematical models ; Meteorological satellites ; Momentum ; Momentum transfer ; Monitoring/Environmental Analysis ; Numerical models ; Ocean models ; Ocean surface ; Oceanography ; Oceans ; Residential density ; Reynolds number ; Santos ; Skin ; Skin friction ; Stratification ; Surface energy ; Surface waves ; Temperature (air-sea) ; Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO) ; Turbulent flow ; Water column ; Water vapor ; Water vapour ; Wind ; Wind speed ; Wind stress</subject><ispartof>Ocean dynamics, 2019-01, Vol.69 (1), p.43-50</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Ocean Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-48313da615d5d1727220836ef8b999a7b389f1114e852876571f108d176137b63</citedby><cites>FETCH-LOGICAL-c316t-48313da615d5d1727220836ef8b999a7b389f1114e852876571f108d176137b63</cites><orcidid>0000-0002-3525-1841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10236-018-1228-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10236-018-1228-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mellor, George</creatorcontrib><title>On the two components of wind-driven ocean surface stress with extension to scalar fluxes</title><title>Ocean dynamics</title><addtitle>Ocean Dynamics</addtitle><description>When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to do so is uncertain. The two surface forcing processes, a result of turbulent atmospheric flow over waves, are boundary conditions for momentum transfer into the water column. The surface energy flux related to form drag is that which drives surface waves. As in other fluid dynamic flows where viscous and/or pressure stresses are involved, one supposes there exists a relevant Reynolds number. In this paper, we begin with the rather definitive near-wall data of Nikuradse, governed by a wall Reynolds number, and progress to equations useful for air flow over ocean surface waves for which reference is made to a consensus of formulas, resident in the literature, for drag coefficient versus wind speed. The processes of momentum transfer and the transfer of heat and water vapor across the air-sea interface differ. The governing equations of the latter scalar quantities do not contain pressure, and therefore, form drag is excluded. A detailed study of bulk coefficients for heat and water vapor transfer which includes low wind speed show that the bulk coefficients are nearly constants as a function of wind speed in accordance with observations. For greatest precision, neutral bulk coefficients presented here should be corrected for density stratification (Large and Pond 1982 ).</description><subject>25-28 June 2018</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Boundary conditions</subject><subject>Brazil</subject><subject>Bulk density</subject><subject>Computational fluid dynamics</subject><subject>Constants</subject><subject>Density stratification</subject><subject>Drag</subject><subject>Drag coefficient</subject><subject>Drag coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Fluxes</subject><subject>Form drag</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Momentum</subject><subject>Momentum transfer</subject><subject>Monitoring/Environmental Analysis</subject><subject>Numerical models</subject><subject>Ocean models</subject><subject>Ocean surface</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Residential density</subject><subject>Reynolds number</subject><subject>Santos</subject><subject>Skin</subject><subject>Skin friction</subject><subject>Stratification</subject><subject>Surface energy</subject><subject>Surface waves</subject><subject>Temperature (air-sea)</subject><subject>Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO)</subject><subject>Turbulent flow</subject><subject>Water column</subject><subject>Water vapor</subject><subject>Water vapour</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Wind stress</subject><issn>1616-7341</issn><issn>1616-7228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1OAyEURonRxFp9AHckrlEuzACzNI1_SZNudOGK0Bmw07RQgbH17cWMxpUrLsn5vntzELoEeg2UypsElHFBKCgCjCkij9AEBAgiy-_4d-YVnKKzlNaUghQVm6DXhcd5ZXHeB9yG7S5463PCweF97zvSxf7DehxaazxOQ3SmtTjlaFMqQF5he8jWpz6UloBTazYmYrcZDjadoxNnNsle_LxT9HJ_9zx7JPPFw9Psdk5aDiKTSnHgnRFQd3UHkpV7qeLCOrVsmsbIJVeNA4DKqpopKWoJDqgqqAAul4JP0dXYu4vhfbAp63UYoi8rNQNGhWK1oIWCkWpjSClap3ex35r4qYHqb4N6NKiLQf1tUMuSYWMmFda_2fjX_H_oC6wkchk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mellor, George</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3525-1841</orcidid></search><sort><creationdate>20190101</creationdate><title>On the two components of wind-driven ocean surface stress with extension to scalar fluxes</title><author>Mellor, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-48313da615d5d1727220836ef8b999a7b389f1114e852876571f108d176137b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>25-28 June 2018</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Boundary conditions</topic><topic>Brazil</topic><topic>Bulk density</topic><topic>Computational fluid dynamics</topic><topic>Constants</topic><topic>Density stratification</topic><topic>Drag</topic><topic>Drag coefficient</topic><topic>Drag coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Fluxes</topic><topic>Form drag</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Momentum</topic><topic>Momentum transfer</topic><topic>Monitoring/Environmental Analysis</topic><topic>Numerical models</topic><topic>Ocean models</topic><topic>Ocean surface</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Residential density</topic><topic>Reynolds number</topic><topic>Santos</topic><topic>Skin</topic><topic>Skin friction</topic><topic>Stratification</topic><topic>Surface energy</topic><topic>Surface waves</topic><topic>Temperature (air-sea)</topic><topic>Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO)</topic><topic>Turbulent flow</topic><topic>Water column</topic><topic>Water vapor</topic><topic>Water vapour</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Wind stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellor, George</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ocean dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellor, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the two components of wind-driven ocean surface stress with extension to scalar fluxes</atitle><jtitle>Ocean dynamics</jtitle><stitle>Ocean Dynamics</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>69</volume><issue>1</issue><spage>43</spage><epage>50</epage><pages>43-50</pages><issn>1616-7341</issn><eissn>1616-7228</eissn><abstract>When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to do so is uncertain. The two surface forcing processes, a result of turbulent atmospheric flow over waves, are boundary conditions for momentum transfer into the water column. The surface energy flux related to form drag is that which drives surface waves. As in other fluid dynamic flows where viscous and/or pressure stresses are involved, one supposes there exists a relevant Reynolds number. In this paper, we begin with the rather definitive near-wall data of Nikuradse, governed by a wall Reynolds number, and progress to equations useful for air flow over ocean surface waves for which reference is made to a consensus of formulas, resident in the literature, for drag coefficient versus wind speed. The processes of momentum transfer and the transfer of heat and water vapor across the air-sea interface differ. The governing equations of the latter scalar quantities do not contain pressure, and therefore, form drag is excluded. A detailed study of bulk coefficients for heat and water vapor transfer which includes low wind speed show that the bulk coefficients are nearly constants as a function of wind speed in accordance with observations. For greatest precision, neutral bulk coefficients presented here should be corrected for density stratification (Large and Pond 1982 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10236-018-1228-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3525-1841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-7341
ispartof Ocean dynamics, 2019-01, Vol.69 (1), p.43-50
issn 1616-7341
1616-7228
language eng
recordid cdi_proquest_journals_2120682560
source SpringerLink Journals - AutoHoldings
subjects 25-28 June 2018
Aerodynamics
Air flow
Atmospheric models
Atmospheric Sciences
Boundary conditions
Brazil
Bulk density
Computational fluid dynamics
Constants
Density stratification
Drag
Drag coefficient
Drag coefficients
Earth and Environmental Science
Earth Sciences
Energy flux
Energy transfer
Fluid flow
Fluid- and Aerodynamics
Fluxes
Form drag
Geophysics/Geodesy
Mathematical models
Meteorological satellites
Momentum
Momentum transfer
Monitoring/Environmental Analysis
Numerical models
Ocean models
Ocean surface
Oceanography
Oceans
Residential density
Reynolds number
Santos
Skin
Skin friction
Stratification
Surface energy
Surface waves
Temperature (air-sea)
Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO)
Turbulent flow
Water column
Water vapor
Water vapour
Wind
Wind speed
Wind stress
title On the two components of wind-driven ocean surface stress with extension to scalar fluxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20two%20components%20of%20wind-driven%20ocean%20surface%20stress%20with%20extension%20to%20scalar%20fluxes&rft.jtitle=Ocean%20dynamics&rft.au=Mellor,%20George&rft.date=2019-01-01&rft.volume=69&rft.issue=1&rft.spage=43&rft.epage=50&rft.pages=43-50&rft.issn=1616-7341&rft.eissn=1616-7228&rft_id=info:doi/10.1007/s10236-018-1228-7&rft_dat=%3Cproquest_cross%3E2120682560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120682560&rft_id=info:pmid/&rfr_iscdi=true