Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield

Site-specific management strategies are usually dependant on the understanding of the underlying cause and effect relationships that occur at the within-field level. The assessment of canopy geometry of tree crops has been facilitated in recent years through the development of light detection and ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precision agriculture 2019-08, Vol.20 (4), p.805-822
Hauptverfasser: Colaço, André F., Molin, José P., Rosell-Polo, Joan R., Escolà, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 4
container_start_page 805
container_title Precision agriculture
container_volume 20
creator Colaço, André F.
Molin, José P.
Rosell-Polo, Joan R.
Escolà, Alexandre
description Site-specific management strategies are usually dependant on the understanding of the underlying cause and effect relationships that occur at the within-field level. The assessment of canopy geometry of tree crops has been facilitated in recent years through the development of light detection and ranging sensors mounted on terrestrial platforms. The main objective of this study was to uncover the factors driving orange tree variability in commercial orange groves. Secondly, this study sought to investigate whether tree geometry information derived from a terrestrial sensing platform is useful information to guide management zones delineation in such groves. A database of soil physical attributes, elevation, historical yield and canopy geometry (canopy volume and height) was analysed in three commercial orange groves in São Paulo, Brazil. Canopy geometry and historical yield were correlated with soil attributes in two of the three groves evaluated; in these groves, the correlation coefficient between yield and soil/landscape information was often above 0.6, depending on the year. Zones of different tree sizes presented different historical yield and soil properties in all three groves. In conclusion, assessing canopy volume provides useful information to delineate management zones and guide enhanced site-specific management strategies.
doi_str_mv 10.1007/s11119-018-9615-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120542148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120542148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8924bb30a47a20abf8f32061d6ccc95f03417747dd0bed859aa7994ce748f96d3</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuA64xJmjSNOxn8gwEFdR3SNK0Z2mZMMgN9ezNUcOXd5EK-8104AFwTvCIYi9tI8kiESYVkSTjCJ2BBuCgQKUl1mvei4ohSXp6Dixi3GGeK0QWY3nc6Od3Dgw5O1653aYJuhMYPgw3m-OODHjsLu-APNq7gmw4J0jsYbJ_JsYNGj343wc76waYwweRh9K6HOqXg6n2yEeqxgV8uJh-cyY2Ts31zCc5a3Ud79fsuwefjw8f6GW1en17W9xtkCi4TqiRldV1gzYSmWNdt1RYUl6QpjTGSt7hgRAgmmgbXtqm41FpIyYwVrGpl2RRLcDP37oL_3tuY1Nbvw5hPKkoo5owSVuUUmVMm-BiDbdUuuEGHSRGsjobVbFhlw-poWOHM0JmJOZsVhb_m_6EfyBJ_xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120542148</pqid></control><display><type>article</type><title>Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield</title><source>Springer Nature - Complete Springer Journals</source><creator>Colaço, André F. ; Molin, José P. ; Rosell-Polo, Joan R. ; Escolà, Alexandre</creator><creatorcontrib>Colaço, André F. ; Molin, José P. ; Rosell-Polo, Joan R. ; Escolà, Alexandre</creatorcontrib><description>Site-specific management strategies are usually dependant on the understanding of the underlying cause and effect relationships that occur at the within-field level. The assessment of canopy geometry of tree crops has been facilitated in recent years through the development of light detection and ranging sensors mounted on terrestrial platforms. The main objective of this study was to uncover the factors driving orange tree variability in commercial orange groves. Secondly, this study sought to investigate whether tree geometry information derived from a terrestrial sensing platform is useful information to guide management zones delineation in such groves. A database of soil physical attributes, elevation, historical yield and canopy geometry (canopy volume and height) was analysed in three commercial orange groves in São Paulo, Brazil. Canopy geometry and historical yield were correlated with soil attributes in two of the three groves evaluated; in these groves, the correlation coefficient between yield and soil/landscape information was often above 0.6, depending on the year. Zones of different tree sizes presented different historical yield and soil properties in all three groves. In conclusion, assessing canopy volume provides useful information to delineate management zones and guide enhanced site-specific management strategies.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-018-9615-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Canopies ; Chemistry and Earth Sciences ; Computer Science ; Correlation coefficient ; Correlation coefficients ; Crop yield ; Fruit trees ; Fruits ; Geometry ; Historic sites ; Information management ; Lidar ; Life Sciences ; Orchards ; Physics ; Remote Sensing/Photogrammetry ; Soil properties ; Soil Science &amp; Conservation ; Statistics for Engineering ; Tree crops</subject><ispartof>Precision agriculture, 2019-08, Vol.20 (4), p.805-822</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Precision Agriculture is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8924bb30a47a20abf8f32061d6ccc95f03417747dd0bed859aa7994ce748f96d3</citedby><cites>FETCH-LOGICAL-c359t-8924bb30a47a20abf8f32061d6ccc95f03417747dd0bed859aa7994ce748f96d3</cites><orcidid>0000-0003-1741-9054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-018-9615-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-018-9615-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Colaço, André F.</creatorcontrib><creatorcontrib>Molin, José P.</creatorcontrib><creatorcontrib>Rosell-Polo, Joan R.</creatorcontrib><creatorcontrib>Escolà, Alexandre</creatorcontrib><title>Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Site-specific management strategies are usually dependant on the understanding of the underlying cause and effect relationships that occur at the within-field level. The assessment of canopy geometry of tree crops has been facilitated in recent years through the development of light detection and ranging sensors mounted on terrestrial platforms. The main objective of this study was to uncover the factors driving orange tree variability in commercial orange groves. Secondly, this study sought to investigate whether tree geometry information derived from a terrestrial sensing platform is useful information to guide management zones delineation in such groves. A database of soil physical attributes, elevation, historical yield and canopy geometry (canopy volume and height) was analysed in three commercial orange groves in São Paulo, Brazil. Canopy geometry and historical yield were correlated with soil attributes in two of the three groves evaluated; in these groves, the correlation coefficient between yield and soil/landscape information was often above 0.6, depending on the year. Zones of different tree sizes presented different historical yield and soil properties in all three groves. In conclusion, assessing canopy volume provides useful information to delineate management zones and guide enhanced site-specific management strategies.</description><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Canopies</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crop yield</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Geometry</subject><subject>Historic sites</subject><subject>Information management</subject><subject>Lidar</subject><subject>Life Sciences</subject><subject>Orchards</subject><subject>Physics</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Soil properties</subject><subject>Soil Science &amp; Conservation</subject><subject>Statistics for Engineering</subject><subject>Tree crops</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxDAURoMoOI4-gLuA64xJmjSNOxn8gwEFdR3SNK0Z2mZMMgN9ezNUcOXd5EK-8104AFwTvCIYi9tI8kiESYVkSTjCJ2BBuCgQKUl1mvei4ohSXp6Dixi3GGeK0QWY3nc6Od3Dgw5O1653aYJuhMYPgw3m-OODHjsLu-APNq7gmw4J0jsYbJ_JsYNGj343wc76waYwweRh9K6HOqXg6n2yEeqxgV8uJh-cyY2Ts31zCc5a3Ud79fsuwefjw8f6GW1en17W9xtkCi4TqiRldV1gzYSmWNdt1RYUl6QpjTGSt7hgRAgmmgbXtqm41FpIyYwVrGpl2RRLcDP37oL_3tuY1Nbvw5hPKkoo5owSVuUUmVMm-BiDbdUuuEGHSRGsjobVbFhlw-poWOHM0JmJOZsVhb_m_6EfyBJ_xw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Colaço, André F.</creator><creator>Molin, José P.</creator><creator>Rosell-Polo, Joan R.</creator><creator>Escolà, Alexandre</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1741-9054</orcidid></search><sort><creationdate>20190801</creationdate><title>Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield</title><author>Colaço, André F. ; Molin, José P. ; Rosell-Polo, Joan R. ; Escolà, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8924bb30a47a20abf8f32061d6ccc95f03417747dd0bed859aa7994ce748f96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Canopies</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crop yield</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Geometry</topic><topic>Historic sites</topic><topic>Information management</topic><topic>Lidar</topic><topic>Life Sciences</topic><topic>Orchards</topic><topic>Physics</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Soil properties</topic><topic>Soil Science &amp; Conservation</topic><topic>Statistics for Engineering</topic><topic>Tree crops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colaço, André F.</creatorcontrib><creatorcontrib>Molin, José P.</creatorcontrib><creatorcontrib>Rosell-Polo, Joan R.</creatorcontrib><creatorcontrib>Escolà, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colaço, André F.</au><au>Molin, José P.</au><au>Rosell-Polo, Joan R.</au><au>Escolà, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>805</spage><epage>822</epage><pages>805-822</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Site-specific management strategies are usually dependant on the understanding of the underlying cause and effect relationships that occur at the within-field level. The assessment of canopy geometry of tree crops has been facilitated in recent years through the development of light detection and ranging sensors mounted on terrestrial platforms. The main objective of this study was to uncover the factors driving orange tree variability in commercial orange groves. Secondly, this study sought to investigate whether tree geometry information derived from a terrestrial sensing platform is useful information to guide management zones delineation in such groves. A database of soil physical attributes, elevation, historical yield and canopy geometry (canopy volume and height) was analysed in three commercial orange groves in São Paulo, Brazil. Canopy geometry and historical yield were correlated with soil attributes in two of the three groves evaluated; in these groves, the correlation coefficient between yield and soil/landscape information was often above 0.6, depending on the year. Zones of different tree sizes presented different historical yield and soil properties in all three groves. In conclusion, assessing canopy volume provides useful information to delineate management zones and guide enhanced site-specific management strategies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-018-9615-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1741-9054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-2256
ispartof Precision agriculture, 2019-08, Vol.20 (4), p.805-822
issn 1385-2256
1573-1618
language eng
recordid cdi_proquest_journals_2120542148
source Springer Nature - Complete Springer Journals
subjects Agriculture
Atmospheric Sciences
Biomedical and Life Sciences
Canopies
Chemistry and Earth Sciences
Computer Science
Correlation coefficient
Correlation coefficients
Crop yield
Fruit trees
Fruits
Geometry
Historic sites
Information management
Lidar
Life Sciences
Orchards
Physics
Remote Sensing/Photogrammetry
Soil properties
Soil Science & Conservation
Statistics for Engineering
Tree crops
title Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20variability%20in%20commercial%20orange%20groves.%20Part%202:%20relating%20canopy%20geometry%20to%20soil%20attributes%20and%20historical%20yield&rft.jtitle=Precision%20agriculture&rft.au=Cola%C3%A7o,%20Andr%C3%A9%20F.&rft.date=2019-08-01&rft.volume=20&rft.issue=4&rft.spage=805&rft.epage=822&rft.pages=805-822&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-018-9615-0&rft_dat=%3Cproquest_cross%3E2120542148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120542148&rft_id=info:pmid/&rfr_iscdi=true