On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems
A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the ‘optical theorem’ (which relates the scattering cross‐section to the far‐field pattern in the forward direction for an incident plane wave) is proved. For a spherical scatterer, low‐frequency results are obtained b...
Gespeichert in:
Veröffentlicht in: | IMA journal of applied mathematics 2001-12, Vol.66 (6), p.539-549 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 6 |
container_start_page | 539 |
container_title | IMA journal of applied mathematics |
container_volume | 66 |
creator | Athanasiadis, C. Martin, P. A. Stratis, I. G. |
description | A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the ‘optical theorem’ (which relates the scattering cross‐section to the far‐field pattern in the forward direction for an incident plane wave) is proved. For a spherical scatterer, low‐frequency results are obtained by approximating the known exact solution (separation of variables). In particular, a closed‐form approximation for the scattered wavefield at the source of the incident spherical wave is obtained. This leads to the explicit solution of some simple near‐field inverse problems, where both the source and coincident receiver are located at several points in the vicinity of a small sphere. |
doi_str_mv | 10.1093/imamat/66.6.539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212052066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>376616431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-77412ecb866f4331771f20bff4685374c2a09f9e2859390a003e38f64949eb613</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVoIK7Tc66ikOPao48drY7BbeJCIDQfUHoR2vUo3XS9dqXN1y0_ob-xv6Qqm9TMYWDmeedlXsaOBMwEWDVv137thzniDGelsntsIjTqQqHS79gEpJGFtggH7H1KdwAgSgMT5i96nrY_KLaN7_68_H70D8RT44chj_pbXj9zvwPeNhS571c8UucHWvGefMza0FK34m3_QDER38ZN3dE6HbL94LtEH177lN2cfr5eLIvzi7Mvi5PzotEAQ2GMFpKaukIMWilhjAgS6hA0VqUyupEebLAkq9IqCx5AkaoCaqst1SjUlH0c72bjX_eUBne3uY99tnRSSCglIGZoPkJN3KQUKbhtzMHFZyfA_YvRjTE6RIcux5gVx69nfX6-C9H3TZt2Mp3LWJ25YuTaNNDT_72PPx0aZUq3_Pbdff10qi-vSuWM-gs1aYTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212052066</pqid></control><display><type>article</type><title>On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems</title><source>Oxford University Press Journals Current</source><creator>Athanasiadis, C. ; Martin, P. A. ; Stratis, I. G.</creator><creatorcontrib>Athanasiadis, C. ; Martin, P. A. ; Stratis, I. G.</creatorcontrib><description>A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the ‘optical theorem’ (which relates the scattering cross‐section to the far‐field pattern in the forward direction for an incident plane wave) is proved. For a spherical scatterer, low‐frequency results are obtained by approximating the known exact solution (separation of variables). In particular, a closed‐form approximation for the scattered wavefield at the source of the incident spherical wave is obtained. This leads to the explicit solution of some simple near‐field inverse problems, where both the source and coincident receiver are located at several points in the vicinity of a small sphere.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/66.6.539</identifier><identifier>CODEN: IJAMDM</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; near field inverse problems ; optical theorem ; Physics ; small spherical scatterer ; spherical acoustic waves ; Underwater sound</subject><ispartof>IMA journal of applied mathematics, 2001-12, Vol.66 (6), p.539-549</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-77412ecb866f4331771f20bff4685374c2a09f9e2859390a003e38f64949eb613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14141794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanasiadis, C.</creatorcontrib><creatorcontrib>Martin, P. A.</creatorcontrib><creatorcontrib>Stratis, I. G.</creatorcontrib><title>On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems</title><title>IMA journal of applied mathematics</title><addtitle>IMA J Appl Math</addtitle><description>A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the ‘optical theorem’ (which relates the scattering cross‐section to the far‐field pattern in the forward direction for an incident plane wave) is proved. For a spherical scatterer, low‐frequency results are obtained by approximating the known exact solution (separation of variables). In particular, a closed‐form approximation for the scattered wavefield at the source of the incident spherical wave is obtained. This leads to the explicit solution of some simple near‐field inverse problems, where both the source and coincident receiver are located at several points in the vicinity of a small sphere.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>near field inverse problems</subject><subject>optical theorem</subject><subject>Physics</subject><subject>small spherical scatterer</subject><subject>spherical acoustic waves</subject><subject>Underwater sound</subject><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rGzEQhkVoIK7Tc66ikOPao48drY7BbeJCIDQfUHoR2vUo3XS9dqXN1y0_ob-xv6Qqm9TMYWDmeedlXsaOBMwEWDVv137thzniDGelsntsIjTqQqHS79gEpJGFtggH7H1KdwAgSgMT5i96nrY_KLaN7_68_H70D8RT44chj_pbXj9zvwPeNhS571c8UucHWvGefMza0FK34m3_QDER38ZN3dE6HbL94LtEH177lN2cfr5eLIvzi7Mvi5PzotEAQ2GMFpKaukIMWilhjAgS6hA0VqUyupEebLAkq9IqCx5AkaoCaqst1SjUlH0c72bjX_eUBne3uY99tnRSSCglIGZoPkJN3KQUKbhtzMHFZyfA_YvRjTE6RIcux5gVx69nfX6-C9H3TZt2Mp3LWJ25YuTaNNDT_72PPx0aZUq3_Pbdff10qi-vSuWM-gs1aYTQ</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Athanasiadis, C.</creator><creator>Martin, P. A.</creator><creator>Stratis, I. G.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20011201</creationdate><title>On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems</title><author>Athanasiadis, C. ; Martin, P. A. ; Stratis, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-77412ecb866f4331771f20bff4685374c2a09f9e2859390a003e38f64949eb613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>near field inverse problems</topic><topic>optical theorem</topic><topic>Physics</topic><topic>small spherical scatterer</topic><topic>spherical acoustic waves</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasiadis, C.</creatorcontrib><creatorcontrib>Martin, P. A.</creatorcontrib><creatorcontrib>Stratis, I. G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasiadis, C.</au><au>Martin, P. A.</au><au>Stratis, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems</atitle><jtitle>IMA journal of applied mathematics</jtitle><addtitle>IMA J Appl Math</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>66</volume><issue>6</issue><spage>539</spage><epage>549</epage><pages>539-549</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><coden>IJAMDM</coden><abstract>A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the ‘optical theorem’ (which relates the scattering cross‐section to the far‐field pattern in the forward direction for an incident plane wave) is proved. For a spherical scatterer, low‐frequency results are obtained by approximating the known exact solution (separation of variables). In particular, a closed‐form approximation for the scattered wavefield at the source of the incident spherical wave is obtained. This leads to the explicit solution of some simple near‐field inverse problems, where both the source and coincident receiver are located at several points in the vicinity of a small sphere.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imamat/66.6.539</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4960 |
ispartof | IMA journal of applied mathematics, 2001-12, Vol.66 (6), p.539-549 |
issn | 0272-4960 1464-3634 |
language | eng |
recordid | cdi_proquest_journals_212052066 |
source | Oxford University Press Journals Current |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) near field inverse problems optical theorem Physics small spherical scatterer spherical acoustic waves Underwater sound |
title | On spherical‐wave scattering by a spherical scatterer and related near‐field inverse problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20spherical%E2%80%90wave%20scattering%20by%20a%20spherical%20scatterer%20and%20related%20near%E2%80%90field%20inverse%20problems&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Athanasiadis,%20C.&rft.date=2001-12-01&rft.volume=66&rft.issue=6&rft.spage=539&rft.epage=549&rft.pages=539-549&rft.issn=0272-4960&rft.eissn=1464-3634&rft.coden=IJAMDM&rft_id=info:doi/10.1093/imamat/66.6.539&rft_dat=%3Cproquest_cross%3E376616431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212052066&rft_id=info:pmid/&rfr_iscdi=true |