Ab initio response functions for Cherenkov-based neutron detectors

Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-10, Vol.89 (10), p.10I136-10I136
Hauptverfasser: Schlossberg, D. J., Moore, A. S., Beeman, B. V., Eckart, M. J., Grim, G. P., Hartouni, E. P., Hatarik, R., Rubery, M. S., Sayre, D. B., Waltz, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10I136
container_issue 10
container_start_page 10I136
container_title Review of scientific instruments
container_volume 89
creator Schlossberg, D. J.
Moore, A. S.
Beeman, B. V.
Eckart, M. J.
Grim, G. P.
Hartouni, E. P.
Hatarik, R.
Rubery, M. S.
Sayre, D. B.
Waltz, C.
description Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-ray sensitivity, these systems can provide better than 30 ps precision for measuring first moments of neutron distributions. Generation of ab initio instrument response functions (IRFs) is critical to meet the
doi_str_mv 10.1063/1.5039399
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2120483257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130800341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9b68d9b6612eb554d7abbe963af915f73d5d25f105bc9da17f751fe4e2c942203</originalsourceid><addsrcrecordid>eNp90E9LHDEYBvBQlLpqD_0CZdCLLcyaN38mk6Mu1goLXvQcZpI3OHY32SYzgt_eLLttoVBzSCD8ePLmIeQz0DnQhl_CXFKuudYfyAxoq2vVMH5AZpRyUTdKtEfkOOdnWpYE-EiOeOFaCZiR66u-GsIwDrFKmDcxZKz8FGy5CLnyMVWLJ0wYfsaXuu8yuirgNKYYKocj2jGmfEoOfbfK-Gl_npDH7zcPix_18v72bnG1rK0Qcqx137SubA0w7KUUTnV9j7rhndcgveJOOiY9UNlb7TpQXknwKJBZLRij_ISc7XJjHgeT7VDef7IxhDKGAaFUC6ygix3apPhrwjya9ZAtrlZdwDhlw4DTdtsLFHr-D32OUwrlC0UxKlrOpCrq607ZFHNO6M0mDesuvRqgZtu-AbNvv9gv-8SpX6P7I3_XXcC3HdhO3207fjftv_glpr_QbJznb28dmV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120483257</pqid></control><display><type>article</type><title>Ab initio response functions for Cherenkov-based neutron detectors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schlossberg, D. J. ; Moore, A. S. ; Beeman, B. V. ; Eckart, M. J. ; Grim, G. P. ; Hartouni, E. P. ; Hatarik, R. ; Rubery, M. S. ; Sayre, D. B. ; Waltz, C.</creator><creatorcontrib>Schlossberg, D. J. ; Moore, A. S. ; Beeman, B. V. ; Eckart, M. J. ; Grim, G. P. ; Hartouni, E. P. ; Hatarik, R. ; Rubery, M. S. ; Sayre, D. B. ; Waltz, C.</creatorcontrib><description>Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-ray sensitivity, these systems can provide better than 30 ps precision for measuring first moments of neutron distributions. Generation of ab initio instrument response functions (IRFs) is critical to meet the &lt;1% uncertainty needed. A combination of Monte Carlo modeling, benchtop characterization, and in situ comparison is employed. Close agreement is shown between the modeled IRFs and in situ measurements using the NIF’s short-pulse advanced radiographic capability beams. First and second moments of neutron spectra calculated using ab initio IRFs agree well with established scintillator measurements. Next-step designs offer increased sensitivity and time-response.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5039399</identifier><identifier>PMID: 30399741</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Beams (radiation) ; Cerenkov counters ; Computer simulation ; Detectors ; Fused silica ; Gamma rays ; In situ measurement ; Mathematical models ; Microchannel plates ; Microchannels ; Nanosecond response ; Neutron counters ; Neutron spectra ; Photomultiplier tubes ; Radiators ; Response functions ; Response time ; Scientific apparatus &amp; instruments ; Scintillation counters ; Sensitivity ; Silicon dioxide ; Time response</subject><ispartof>Review of scientific instruments, 2018-10, Vol.89 (10), p.10I136-10I136</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9b68d9b6612eb554d7abbe963af915f73d5d25f105bc9da17f751fe4e2c942203</citedby><cites>FETCH-LOGICAL-c445t-9b68d9b6612eb554d7abbe963af915f73d5d25f105bc9da17f751fe4e2c942203</cites><orcidid>0000-0002-8713-9448 ; 0000-0001-9869-4351 ; 0000000287139448 ; 0000000198694351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5039399$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4499,27906,27907,76134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30399741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1477812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlossberg, D. J.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Beeman, B. V.</creatorcontrib><creatorcontrib>Eckart, M. J.</creatorcontrib><creatorcontrib>Grim, G. P.</creatorcontrib><creatorcontrib>Hartouni, E. P.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Rubery, M. S.</creatorcontrib><creatorcontrib>Sayre, D. B.</creatorcontrib><creatorcontrib>Waltz, C.</creatorcontrib><title>Ab initio response functions for Cherenkov-based neutron detectors</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-ray sensitivity, these systems can provide better than 30 ps precision for measuring first moments of neutron distributions. Generation of ab initio instrument response functions (IRFs) is critical to meet the &lt;1% uncertainty needed. A combination of Monte Carlo modeling, benchtop characterization, and in situ comparison is employed. Close agreement is shown between the modeled IRFs and in situ measurements using the NIF’s short-pulse advanced radiographic capability beams. First and second moments of neutron spectra calculated using ab initio IRFs agree well with established scintillator measurements. Next-step designs offer increased sensitivity and time-response.</description><subject>Beams (radiation)</subject><subject>Cerenkov counters</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Fused silica</subject><subject>Gamma rays</subject><subject>In situ measurement</subject><subject>Mathematical models</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Nanosecond response</subject><subject>Neutron counters</subject><subject>Neutron spectra</subject><subject>Photomultiplier tubes</subject><subject>Radiators</subject><subject>Response functions</subject><subject>Response time</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Scintillation counters</subject><subject>Sensitivity</subject><subject>Silicon dioxide</subject><subject>Time response</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E9LHDEYBvBQlLpqD_0CZdCLLcyaN38mk6Mu1goLXvQcZpI3OHY32SYzgt_eLLttoVBzSCD8ePLmIeQz0DnQhl_CXFKuudYfyAxoq2vVMH5AZpRyUTdKtEfkOOdnWpYE-EiOeOFaCZiR66u-GsIwDrFKmDcxZKz8FGy5CLnyMVWLJ0wYfsaXuu8yuirgNKYYKocj2jGmfEoOfbfK-Gl_npDH7zcPix_18v72bnG1rK0Qcqx137SubA0w7KUUTnV9j7rhndcgveJOOiY9UNlb7TpQXknwKJBZLRij_ISc7XJjHgeT7VDef7IxhDKGAaFUC6ygix3apPhrwjya9ZAtrlZdwDhlw4DTdtsLFHr-D32OUwrlC0UxKlrOpCrq607ZFHNO6M0mDesuvRqgZtu-AbNvv9gv-8SpX6P7I3_XXcC3HdhO3207fjftv_glpr_QbJznb28dmV4</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Schlossberg, D. J.</creator><creator>Moore, A. S.</creator><creator>Beeman, B. V.</creator><creator>Eckart, M. J.</creator><creator>Grim, G. P.</creator><creator>Hartouni, E. P.</creator><creator>Hatarik, R.</creator><creator>Rubery, M. S.</creator><creator>Sayre, D. B.</creator><creator>Waltz, C.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8713-9448</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000000287139448</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid></search><sort><creationdate>201810</creationdate><title>Ab initio response functions for Cherenkov-based neutron detectors</title><author>Schlossberg, D. J. ; Moore, A. S. ; Beeman, B. V. ; Eckart, M. J. ; Grim, G. P. ; Hartouni, E. P. ; Hatarik, R. ; Rubery, M. S. ; Sayre, D. B. ; Waltz, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9b68d9b6612eb554d7abbe963af915f73d5d25f105bc9da17f751fe4e2c942203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beams (radiation)</topic><topic>Cerenkov counters</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Fused silica</topic><topic>Gamma rays</topic><topic>In situ measurement</topic><topic>Mathematical models</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Nanosecond response</topic><topic>Neutron counters</topic><topic>Neutron spectra</topic><topic>Photomultiplier tubes</topic><topic>Radiators</topic><topic>Response functions</topic><topic>Response time</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Scintillation counters</topic><topic>Sensitivity</topic><topic>Silicon dioxide</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlossberg, D. J.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Beeman, B. V.</creatorcontrib><creatorcontrib>Eckart, M. J.</creatorcontrib><creatorcontrib>Grim, G. P.</creatorcontrib><creatorcontrib>Hartouni, E. P.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Rubery, M. S.</creatorcontrib><creatorcontrib>Sayre, D. B.</creatorcontrib><creatorcontrib>Waltz, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlossberg, D. J.</au><au>Moore, A. S.</au><au>Beeman, B. V.</au><au>Eckart, M. J.</au><au>Grim, G. P.</au><au>Hartouni, E. P.</au><au>Hatarik, R.</au><au>Rubery, M. S.</au><au>Sayre, D. B.</au><au>Waltz, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio response functions for Cherenkov-based neutron detectors</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-10</date><risdate>2018</risdate><volume>89</volume><issue>10</issue><spage>10I136</spage><epage>10I136</epage><pages>10I136-10I136</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-ray sensitivity, these systems can provide better than 30 ps precision for measuring first moments of neutron distributions. Generation of ab initio instrument response functions (IRFs) is critical to meet the &lt;1% uncertainty needed. A combination of Monte Carlo modeling, benchtop characterization, and in situ comparison is employed. Close agreement is shown between the modeled IRFs and in situ measurements using the NIF’s short-pulse advanced radiographic capability beams. First and second moments of neutron spectra calculated using ab initio IRFs agree well with established scintillator measurements. Next-step designs offer increased sensitivity and time-response.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30399741</pmid><doi>10.1063/1.5039399</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8713-9448</orcidid><orcidid>https://orcid.org/0000-0001-9869-4351</orcidid><orcidid>https://orcid.org/0000000287139448</orcidid><orcidid>https://orcid.org/0000000198694351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-10, Vol.89 (10), p.10I136-10I136
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_journals_2120483257
source AIP Journals Complete; Alma/SFX Local Collection
subjects Beams (radiation)
Cerenkov counters
Computer simulation
Detectors
Fused silica
Gamma rays
In situ measurement
Mathematical models
Microchannel plates
Microchannels
Nanosecond response
Neutron counters
Neutron spectra
Photomultiplier tubes
Radiators
Response functions
Response time
Scientific apparatus & instruments
Scintillation counters
Sensitivity
Silicon dioxide
Time response
title Ab initio response functions for Cherenkov-based neutron detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20response%20functions%20for%20Cherenkov-based%20neutron%20detectors&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Schlossberg,%20D.%20J.&rft.date=2018-10&rft.volume=89&rft.issue=10&rft.spage=10I136&rft.epage=10I136&rft.pages=10I136-10I136&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5039399&rft_dat=%3Cproquest_scita%3E2130800341%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120483257&rft_id=info:pmid/30399741&rfr_iscdi=true