Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations
Abstract We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2017-12, Vol.472 (4), p.4992-5003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5003 |
---|---|
container_issue | 4 |
container_start_page | 4992 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 472 |
creator | Contreras, S. Padilla, N. Lagos, C. D. P. |
description | Abstract
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector
in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo
simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo
simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations. |
doi_str_mv | 10.1093/mnras/stx2410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_2120241068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stx2410</oup_id><sourcerecordid>2120241068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-69409fddd62b8bf808e18e7970385382ac8273df2f2bb2bbed304e748a93f6273</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EEqUwsltiYQn1I3EctlLxkopYYI6c2KYujl38QPTvSWl3pCvd4R6dKx0ALjG6waihs8EFEWcx_ZASoyMwwZRVBWkYOwYThGhV8BrjU3AW4xohVFLCJqCfu49sRYCDH5RLeYDq29ucjHfQOChF-ISDSEkFuBLWq3gLBYwpyy30GqaVgnfexpU3UDgJX4y1yjkzaqIZRu_OE8_BiRY2qovDnoL3h_u3xVOxfH18XsyXRU8angrWlKjRUkpGOt5pjrjCXNVNjSivKCei56SmUhNNum4cJSkqVV1y0VDNxtMUXO29m-C_soqpXfsc3PiyJZigXRXGR6rYU33wMQal200wgwjbFqN217H969geOo789Z73efMP-gtRh3a7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120241068</pqid></control><display><type>article</type><title>Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations</title><source>Oxford Journals Open Access Collection</source><creator>Contreras, S. ; Padilla, N. ; Lagos, C. D. P.</creator><creatorcontrib>Contreras, S. ; Padilla, N. ; Lagos, C. D. P.</creatorcontrib><description>Abstract
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector
in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo
simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo
simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx2410</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Angular momentum ; Computer simulation ; Dark matter ; Dependence ; Evolution ; Monte Carlo simulation ; Orientation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-12, Vol.472 (4), p.4992-5003</ispartof><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2017</rights><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-69409fddd62b8bf808e18e7970385382ac8273df2f2bb2bbed304e748a93f6273</citedby><cites>FETCH-LOGICAL-c298t-69409fddd62b8bf808e18e7970385382ac8273df2f2bb2bbed304e748a93f6273</cites><orcidid>0000-0001-7511-7025 ; 0000-0003-3021-8564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stx2410$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Contreras, S.</creatorcontrib><creatorcontrib>Padilla, N.</creatorcontrib><creatorcontrib>Lagos, C. D. P.</creatorcontrib><title>Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector
in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo
simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo
simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.</description><subject>Angular momentum</subject><subject>Computer simulation</subject><subject>Dark matter</subject><subject>Dependence</subject><subject>Evolution</subject><subject>Monte Carlo simulation</subject><subject>Orientation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EEqUwsltiYQn1I3EctlLxkopYYI6c2KYujl38QPTvSWl3pCvd4R6dKx0ALjG6waihs8EFEWcx_ZASoyMwwZRVBWkYOwYThGhV8BrjU3AW4xohVFLCJqCfu49sRYCDH5RLeYDq29ucjHfQOChF-ISDSEkFuBLWq3gLBYwpyy30GqaVgnfexpU3UDgJX4y1yjkzaqIZRu_OE8_BiRY2qovDnoL3h_u3xVOxfH18XsyXRU8angrWlKjRUkpGOt5pjrjCXNVNjSivKCei56SmUhNNum4cJSkqVV1y0VDNxtMUXO29m-C_soqpXfsc3PiyJZigXRXGR6rYU33wMQal200wgwjbFqN217H969geOo789Z73efMP-gtRh3a7</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Contreras, S.</creator><creator>Padilla, N.</creator><creator>Lagos, C. D. P.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7511-7025</orcidid><orcidid>https://orcid.org/0000-0003-3021-8564</orcidid></search><sort><creationdate>20171201</creationdate><title>Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations</title><author>Contreras, S. ; Padilla, N. ; Lagos, C. D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-69409fddd62b8bf808e18e7970385382ac8273df2f2bb2bbed304e748a93f6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angular momentum</topic><topic>Computer simulation</topic><topic>Dark matter</topic><topic>Dependence</topic><topic>Evolution</topic><topic>Monte Carlo simulation</topic><topic>Orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras, S.</creatorcontrib><creatorcontrib>Padilla, N.</creatorcontrib><creatorcontrib>Lagos, C. D. P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Contreras, S.</au><au>Padilla, N.</au><au>Lagos, C. D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>472</volume><issue>4</issue><spage>4992</spage><epage>5003</epage><pages>4992-5003</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector
in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo
simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo
simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stx2410</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7511-7025</orcidid><orcidid>https://orcid.org/0000-0003-3021-8564</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2017-12, Vol.472 (4), p.4992-5003 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_journals_2120241068 |
source | Oxford Journals Open Access Collection |
subjects | Angular momentum Computer simulation Dark matter Dependence Evolution Monte Carlo simulation Orientation |
title | Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20momentum%20evolution%20in%20dark%20matter%20haloes:%20a%20study%20of%20the%20Bolshoi%20and%20Millennium%20simulations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Contreras,%20S.&rft.date=2017-12-01&rft.volume=472&rft.issue=4&rft.spage=4992&rft.epage=5003&rft.pages=4992-5003&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx2410&rft_dat=%3Cproquest_TOX%3E2120241068%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120241068&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stx2410&rfr_iscdi=true |