Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field
An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are...
Gespeichert in:
Veröffentlicht in: | Technical physics 2018-10, Vol.63 (10), p.1435-1444 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1444 |
---|---|
container_issue | 10 |
container_start_page | 1435 |
container_title | Technical physics |
container_volume | 63 |
creator | Lavrov, I. V. Yakovlev, V. B. |
description | An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions. |
doi_str_mv | 10.1134/S1063784218100158 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2120231608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558411713</galeid><sourcerecordid>A558411713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhjdGE2v1B3gj8bzKwELpsTH1I9F4qJ43LDtYGgoVdmP899LUxIMxHCAvzzMwU1WXQK8BeHOzAir5TDUMFFAKQh1VE6BzWkvBxPH-LHm9vz-tznLeFASUkJNKL713uxxdrz15DMaP2cVAPt2wJpqs1ug9cYHoQBbB5TikuHOGPGPvxi1Zjd0GzYA9GWKh34KzMW3J0pcwFezOoe_PqxOrfcaLn31avd0tX28f6qeX-8fbxVNtuBBDjULpjlvey26ukHV23wiImURKEQwrqeoYciapaKiaY4eMyUYZZhttleTT6upQd5fix4h5aDdxTKE82TJglHGQVBXq-kC9a4-tC7a0pE1ZPW6diQGtK_lCCNUAzIAXAQ6CSTHnhLbdJbfV6asF2u5H3_4ZfXHYwcmFDe-Yfr_yv_QNHISD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120231608</pqid></control><display><type>article</type><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><source>SpringerLink Journals</source><creator>Lavrov, I. V. ; Yakovlev, V. B.</creator><creatorcontrib>Lavrov, I. V. ; Yakovlev, V. B.</creatorcontrib><description>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784218100158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Anisotropy ; Classical and Continuum Physics ; Dielectric properties ; Dielectrics ; Electric field strength ; Electric fields ; Electrical conductivity ; Ellipsoids ; Mathematical analysis ; Physics ; Physics and Astronomy ; Theoretical and Mathematical Physics</subject><ispartof>Technical physics, 2018-10, Vol.63 (10), p.1435-1444</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Pleiades Publishing, Ltd. 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</citedby><cites>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063784218100158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063784218100158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</description><subject>Anisotropy</subject><subject>Classical and Continuum Physics</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electrical conductivity</subject><subject>Ellipsoids</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical and Mathematical Physics</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQhjdGE2v1B3gj8bzKwELpsTH1I9F4qJ43LDtYGgoVdmP899LUxIMxHCAvzzMwU1WXQK8BeHOzAir5TDUMFFAKQh1VE6BzWkvBxPH-LHm9vz-tznLeFASUkJNKL713uxxdrz15DMaP2cVAPt2wJpqs1ug9cYHoQBbB5TikuHOGPGPvxi1Zjd0GzYA9GWKh34KzMW3J0pcwFezOoe_PqxOrfcaLn31avd0tX28f6qeX-8fbxVNtuBBDjULpjlvey26ukHV23wiImURKEQwrqeoYciapaKiaY4eMyUYZZhttleTT6upQd5fix4h5aDdxTKE82TJglHGQVBXq-kC9a4-tC7a0pE1ZPW6diQGtK_lCCNUAzIAXAQ6CSTHnhLbdJbfV6asF2u5H3_4ZfXHYwcmFDe-Yfr_yv_QNHISD1A</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Lavrov, I. V.</creator><creator>Yakovlev, V. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><author>Lavrov, I. V. ; Yakovlev, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Classical and Continuum Physics</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electrical conductivity</topic><topic>Ellipsoids</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical and Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavrov, I. V.</au><au>Yakovlev, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>63</volume><issue>10</issue><spage>1435</spage><epage>1444</epage><pages>1435-1444</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784218100158</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7842 |
ispartof | Technical physics, 2018-10, Vol.63 (10), p.1435-1444 |
issn | 1063-7842 1090-6525 |
language | eng |
recordid | cdi_proquest_journals_2120231608 |
source | SpringerLink Journals |
subjects | Anisotropy Classical and Continuum Physics Dielectric properties Dielectrics Electric field strength Electric fields Electrical conductivity Ellipsoids Mathematical analysis Physics Physics and Astronomy Theoretical and Mathematical Physics |
title | Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellipsoidal%20Inclusion%20with%20a%20Shell%20in%20an%20Anisotropic%20Medium%20Subjected%20to%20a%20Uniform%20Electric%20Field&rft.jtitle=Technical%20physics&rft.au=Lavrov,%20I.%20V.&rft.date=2018-10-01&rft.volume=63&rft.issue=10&rft.spage=1435&rft.epage=1444&rft.pages=1435-1444&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784218100158&rft_dat=%3Cgale_proqu%3EA558411713%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120231608&rft_id=info:pmid/&rft_galeid=A558411713&rfr_iscdi=true |