Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field

An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics 2018-10, Vol.63 (10), p.1435-1444
Hauptverfasser: Lavrov, I. V., Yakovlev, V. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1444
container_issue 10
container_start_page 1435
container_title Technical physics
container_volume 63
creator Lavrov, I. V.
Yakovlev, V. B.
description An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.
doi_str_mv 10.1134/S1063784218100158
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2120231608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558411713</galeid><sourcerecordid>A558411713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhjdGE2v1B3gj8bzKwELpsTH1I9F4qJ43LDtYGgoVdmP899LUxIMxHCAvzzMwU1WXQK8BeHOzAir5TDUMFFAKQh1VE6BzWkvBxPH-LHm9vz-tznLeFASUkJNKL713uxxdrz15DMaP2cVAPt2wJpqs1ug9cYHoQBbB5TikuHOGPGPvxi1Zjd0GzYA9GWKh34KzMW3J0pcwFezOoe_PqxOrfcaLn31avd0tX28f6qeX-8fbxVNtuBBDjULpjlvey26ukHV23wiImURKEQwrqeoYciapaKiaY4eMyUYZZhttleTT6upQd5fix4h5aDdxTKE82TJglHGQVBXq-kC9a4-tC7a0pE1ZPW6diQGtK_lCCNUAzIAXAQ6CSTHnhLbdJbfV6asF2u5H3_4ZfXHYwcmFDe-Yfr_yv_QNHISD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120231608</pqid></control><display><type>article</type><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><source>SpringerLink Journals</source><creator>Lavrov, I. V. ; Yakovlev, V. B.</creator><creatorcontrib>Lavrov, I. V. ; Yakovlev, V. B.</creatorcontrib><description>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784218100158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Anisotropy ; Classical and Continuum Physics ; Dielectric properties ; Dielectrics ; Electric field strength ; Electric fields ; Electrical conductivity ; Ellipsoids ; Mathematical analysis ; Physics ; Physics and Astronomy ; Theoretical and Mathematical Physics</subject><ispartof>Technical physics, 2018-10, Vol.63 (10), p.1435-1444</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Pleiades Publishing, Ltd. 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</citedby><cites>FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063784218100158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063784218100158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</description><subject>Anisotropy</subject><subject>Classical and Continuum Physics</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electrical conductivity</subject><subject>Ellipsoids</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical and Mathematical Physics</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQhjdGE2v1B3gj8bzKwELpsTH1I9F4qJ43LDtYGgoVdmP899LUxIMxHCAvzzMwU1WXQK8BeHOzAir5TDUMFFAKQh1VE6BzWkvBxPH-LHm9vz-tznLeFASUkJNKL713uxxdrz15DMaP2cVAPt2wJpqs1ug9cYHoQBbB5TikuHOGPGPvxi1Zjd0GzYA9GWKh34KzMW3J0pcwFezOoe_PqxOrfcaLn31avd0tX28f6qeX-8fbxVNtuBBDjULpjlvey26ukHV23wiImURKEQwrqeoYciapaKiaY4eMyUYZZhttleTT6upQd5fix4h5aDdxTKE82TJglHGQVBXq-kC9a4-tC7a0pE1ZPW6diQGtK_lCCNUAzIAXAQ6CSTHnhLbdJbfV6asF2u5H3_4ZfXHYwcmFDe-Yfr_yv_QNHISD1A</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Lavrov, I. V.</creator><creator>Yakovlev, V. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</title><author>Lavrov, I. V. ; Yakovlev, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-e58ab3f3d6b98e2bf18101576e00e1c2b988b2e326054089ebe22648c2f4af863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Classical and Continuum Physics</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electrical conductivity</topic><topic>Ellipsoids</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical and Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavrov, I. V.</au><au>Yakovlev, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>63</volume><issue>10</issue><spage>1435</spage><epage>1444</epage><pages>1435-1444</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>An electrostatic problem has been solved for a dielectric inclusion consisting of an anisotropic core and a shell immersed in a homogeneous anisotropic dielectric medium (matrix) subjected to a uniform electric field. The outer boundaries of the core and shell are assumed to be ellipsoids, which are confocal after a linear nonorthogonal transformation that eliminates the anisotropy of the dielectric properties of the shell. Analytical expressions have been obtained for the potential and the electric field strength in the matrix, in the shell and core, and an expression for the inclusion polarizability tensor. A special case of inclusion with an isotropic shell is considered. The expressions obtained are applied to the case of an anisotropic sphere with an isotropic shell immersed in an anisotropic medium. It is also shown that in the limiting case of a homogeneous ellipsoidal inclusion in an anisotropic medium, the obtained result agrees with known solutions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784218100158</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7842
ispartof Technical physics, 2018-10, Vol.63 (10), p.1435-1444
issn 1063-7842
1090-6525
language eng
recordid cdi_proquest_journals_2120231608
source SpringerLink Journals
subjects Anisotropy
Classical and Continuum Physics
Dielectric properties
Dielectrics
Electric field strength
Electric fields
Electrical conductivity
Ellipsoids
Mathematical analysis
Physics
Physics and Astronomy
Theoretical and Mathematical Physics
title Ellipsoidal Inclusion with a Shell in an Anisotropic Medium Subjected to a Uniform Electric Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellipsoidal%20Inclusion%20with%20a%20Shell%20in%20an%20Anisotropic%20Medium%20Subjected%20to%20a%20Uniform%20Electric%20Field&rft.jtitle=Technical%20physics&rft.au=Lavrov,%20I.%20V.&rft.date=2018-10-01&rft.volume=63&rft.issue=10&rft.spage=1435&rft.epage=1444&rft.pages=1435-1444&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784218100158&rft_dat=%3Cgale_proqu%3EA558411713%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120231608&rft_id=info:pmid/&rft_galeid=A558411713&rfr_iscdi=true