Growth Kinetics and Modeling of ZnO Nanoparticles

This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2005-05, Vol.82 (5), p.775
Hauptverfasser: Hale, Penny S, Maddox, Leone M, Shapter, Joe G, Voelcker, Nico H, Ford, Michael J, Waclawik, Eric R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 775
container_title Journal of chemical education
container_volume 82
creator Hale, Penny S
Maddox, Leone M
Shapter, Joe G
Voelcker, Nico H
Ford, Michael J
Waclawik, Eric R
description This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.
doi_str_mv 10.1021/ed082p775
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212012618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ717342</ericid><sourcerecordid>820494251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</originalsourceid><addsrcrecordid>eNplkDtPwzAUhS0EEqUwsDNESAwMAT9je0RVKY9CF1hYohs_IFWIg50K8e8JCioD0x2-T-dcHYSOCb4gmJJLZ7GinZRiB02IZionjKpdNMEDzLVQfB8dpLTGmFCh1QSRRQyf_Vt2X7eur03KoLXZQ7CuqdvXLPjspV1lj9CGDuLAG5cO0Z6HJrmj3ztFz9fzp9lNvlwtbmdXyxwYln1eWaq05Z4bDbISUHHLKHjtsTYGMBZVwaUGXVhpgLPCVJ5Sr6wQrgBdFWyKTsfcLoaPjUt9uQ6b2A6VJSV0-L8gapDOR8nEkFJ0vuxi_Q7xqyS4_Bmk3A4yuCej62Jttt78ThLJOB3w2YjBpL-q_zHfgWBnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212012618</pqid></control><display><type>article</type><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><source>ACS Publications</source><creator>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</creator><creatorcontrib>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</creatorcontrib><description>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed082p775</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Chemistry ; Growth kinetics ; Kinetics ; Nanoparticles ; Science Experiments ; Science Instruction ; Teaching Methods ; Zinc ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of chemical education, 2005-05, Vol.82 (5), p.775</ispartof><rights>Copyright American Chemical Society May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed082p775$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed082p775$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ717342$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Hale, Penny S</creatorcontrib><creatorcontrib>Maddox, Leone M</creatorcontrib><creatorcontrib>Shapter, Joe G</creatorcontrib><creatorcontrib>Voelcker, Nico H</creatorcontrib><creatorcontrib>Ford, Michael J</creatorcontrib><creatorcontrib>Waclawik, Eric R</creatorcontrib><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</description><subject>Chemistry</subject><subject>Growth kinetics</subject><subject>Kinetics</subject><subject>Nanoparticles</subject><subject>Science Experiments</subject><subject>Science Instruction</subject><subject>Teaching Methods</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplkDtPwzAUhS0EEqUwsDNESAwMAT9je0RVKY9CF1hYohs_IFWIg50K8e8JCioD0x2-T-dcHYSOCb4gmJJLZ7GinZRiB02IZionjKpdNMEDzLVQfB8dpLTGmFCh1QSRRQyf_Vt2X7eur03KoLXZQ7CuqdvXLPjspV1lj9CGDuLAG5cO0Z6HJrmj3ztFz9fzp9lNvlwtbmdXyxwYln1eWaq05Z4bDbISUHHLKHjtsTYGMBZVwaUGXVhpgLPCVJ5Sr6wQrgBdFWyKTsfcLoaPjUt9uQ6b2A6VJSV0-L8gapDOR8nEkFJ0vuxi_Q7xqyS4_Bmk3A4yuCej62Jttt78ThLJOB3w2YjBpL-q_zHfgWBnPw</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Hale, Penny S</creator><creator>Maddox, Leone M</creator><creator>Shapter, Joe G</creator><creator>Voelcker, Nico H</creator><creator>Ford, Michael J</creator><creator>Waclawik, Eric R</creator><general>Division of Chemical Education</general><general>Journal of Chemical Education, Subscription Department</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20050501</creationdate><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><author>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Growth kinetics</topic><topic>Kinetics</topic><topic>Nanoparticles</topic><topic>Science Experiments</topic><topic>Science Instruction</topic><topic>Teaching Methods</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, Penny S</creatorcontrib><creatorcontrib>Maddox, Leone M</creatorcontrib><creatorcontrib>Shapter, Joe G</creatorcontrib><creatorcontrib>Voelcker, Nico H</creatorcontrib><creatorcontrib>Ford, Michael J</creatorcontrib><creatorcontrib>Waclawik, Eric R</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, Penny S</au><au>Maddox, Leone M</au><au>Shapter, Joe G</au><au>Voelcker, Nico H</au><au>Ford, Michael J</au><au>Waclawik, Eric R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ717342</ericid><atitle>Growth Kinetics and Modeling of ZnO Nanoparticles</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>82</volume><issue>5</issue><spage>775</spage><pages>775-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed082p775</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2005-05, Vol.82 (5), p.775
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_212012618
source ACS Publications
subjects Chemistry
Growth kinetics
Kinetics
Nanoparticles
Science Experiments
Science Instruction
Teaching Methods
Zinc
Zinc oxide
Zinc oxides
title Growth Kinetics and Modeling of ZnO Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20Kinetics%20and%20Modeling%20of%20ZnO%20Nanoparticles&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Hale,%20Penny%20S&rft.date=2005-05-01&rft.volume=82&rft.issue=5&rft.spage=775&rft.pages=775-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed082p775&rft_dat=%3Cproquest_cross%3E820494251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212012618&rft_id=info:pmid/&rft_ericid=EJ717342&rfr_iscdi=true