Growth Kinetics and Modeling of ZnO Nanoparticles
This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the ab...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2005-05, Vol.82 (5), p.775 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 775 |
container_title | Journal of chemical education |
container_volume | 82 |
creator | Hale, Penny S Maddox, Leone M Shapter, Joe G Voelcker, Nico H Ford, Michael J Waclawik, Eric R |
description | This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems. |
doi_str_mv | 10.1021/ed082p775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212012618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ717342</ericid><sourcerecordid>820494251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</originalsourceid><addsrcrecordid>eNplkDtPwzAUhS0EEqUwsDNESAwMAT9je0RVKY9CF1hYohs_IFWIg50K8e8JCioD0x2-T-dcHYSOCb4gmJJLZ7GinZRiB02IZionjKpdNMEDzLVQfB8dpLTGmFCh1QSRRQyf_Vt2X7eur03KoLXZQ7CuqdvXLPjspV1lj9CGDuLAG5cO0Z6HJrmj3ztFz9fzp9lNvlwtbmdXyxwYln1eWaq05Z4bDbISUHHLKHjtsTYGMBZVwaUGXVhpgLPCVJ5Sr6wQrgBdFWyKTsfcLoaPjUt9uQ6b2A6VJSV0-L8gapDOR8nEkFJ0vuxi_Q7xqyS4_Bmk3A4yuCej62Jttt78ThLJOB3w2YjBpL-q_zHfgWBnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212012618</pqid></control><display><type>article</type><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><source>ACS Publications</source><creator>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</creator><creatorcontrib>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</creatorcontrib><description>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed082p775</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Chemistry ; Growth kinetics ; Kinetics ; Nanoparticles ; Science Experiments ; Science Instruction ; Teaching Methods ; Zinc ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of chemical education, 2005-05, Vol.82 (5), p.775</ispartof><rights>Copyright American Chemical Society May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed082p775$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed082p775$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ717342$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Hale, Penny S</creatorcontrib><creatorcontrib>Maddox, Leone M</creatorcontrib><creatorcontrib>Shapter, Joe G</creatorcontrib><creatorcontrib>Voelcker, Nico H</creatorcontrib><creatorcontrib>Ford, Michael J</creatorcontrib><creatorcontrib>Waclawik, Eric R</creatorcontrib><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</description><subject>Chemistry</subject><subject>Growth kinetics</subject><subject>Kinetics</subject><subject>Nanoparticles</subject><subject>Science Experiments</subject><subject>Science Instruction</subject><subject>Teaching Methods</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplkDtPwzAUhS0EEqUwsDNESAwMAT9je0RVKY9CF1hYohs_IFWIg50K8e8JCioD0x2-T-dcHYSOCb4gmJJLZ7GinZRiB02IZionjKpdNMEDzLVQfB8dpLTGmFCh1QSRRQyf_Vt2X7eur03KoLXZQ7CuqdvXLPjspV1lj9CGDuLAG5cO0Z6HJrmj3ztFz9fzp9lNvlwtbmdXyxwYln1eWaq05Z4bDbISUHHLKHjtsTYGMBZVwaUGXVhpgLPCVJ5Sr6wQrgBdFWyKTsfcLoaPjUt9uQ6b2A6VJSV0-L8gapDOR8nEkFJ0vuxi_Q7xqyS4_Bmk3A4yuCej62Jttt78ThLJOB3w2YjBpL-q_zHfgWBnPw</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Hale, Penny S</creator><creator>Maddox, Leone M</creator><creator>Shapter, Joe G</creator><creator>Voelcker, Nico H</creator><creator>Ford, Michael J</creator><creator>Waclawik, Eric R</creator><general>Division of Chemical Education</general><general>Journal of Chemical Education, Subscription Department</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20050501</creationdate><title>Growth Kinetics and Modeling of ZnO Nanoparticles</title><author>Hale, Penny S ; Maddox, Leone M ; Shapter, Joe G ; Voelcker, Nico H ; Ford, Michael J ; Waclawik, Eric R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-bd289d4f4c9a7b5ab4d32af9f09cca005b6479a96d7ca436cbf22f8d55e6a9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Growth kinetics</topic><topic>Kinetics</topic><topic>Nanoparticles</topic><topic>Science Experiments</topic><topic>Science Instruction</topic><topic>Teaching Methods</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, Penny S</creatorcontrib><creatorcontrib>Maddox, Leone M</creatorcontrib><creatorcontrib>Shapter, Joe G</creatorcontrib><creatorcontrib>Voelcker, Nico H</creatorcontrib><creatorcontrib>Ford, Michael J</creatorcontrib><creatorcontrib>Waclawik, Eric R</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, Penny S</au><au>Maddox, Leone M</au><au>Shapter, Joe G</au><au>Voelcker, Nico H</au><au>Ford, Michael J</au><au>Waclawik, Eric R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ717342</ericid><atitle>Growth Kinetics and Modeling of ZnO Nanoparticles</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>82</volume><issue>5</issue><spage>775</spage><pages>775-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>This article describes a method to measure the growth kinetics of a zinc oxide colloid. Using common instrumentation such as UV–vis spectroscopy, the cut-off wavelength can be determined and hence, the particle size can be estimated. Using existing models of colloidal nanoparticle properties, the absorbance is modeled and compared to the experimental curves. The effect of different parameters in the model such as particle size, refractive index, and solvent type are investigated and conclusions drawn about the nature of nanoparticulate systems.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed082p775</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2005-05, Vol.82 (5), p.775 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_212012618 |
source | ACS Publications |
subjects | Chemistry Growth kinetics Kinetics Nanoparticles Science Experiments Science Instruction Teaching Methods Zinc Zinc oxide Zinc oxides |
title | Growth Kinetics and Modeling of ZnO Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20Kinetics%20and%20Modeling%20of%20ZnO%20Nanoparticles&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Hale,%20Penny%20S&rft.date=2005-05-01&rft.volume=82&rft.issue=5&rft.spage=775&rft.pages=775-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed082p775&rft_dat=%3Cproquest_cross%3E820494251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212012618&rft_id=info:pmid/&rft_ericid=EJ717342&rfr_iscdi=true |