Computational Intelligence in Data-Driven Modelling and Its Engineering Applications

[...]artificial neural networks (ANNs) and fuzzy rule-based systems (FRBSs) serve as fundamental model frameworks, which are alternatives to statistical inference methods. The accepted papers involve a variety of data-driven modelling and data analytics techniques and contribute to a wide range of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018, p.1-2
Hauptverfasser: Zhang, Qian, Spurgeon, Sarah, Xu, Li, Yu, Dingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Zhang, Qian
Spurgeon, Sarah
Xu, Li
Yu, Dingli
description [...]artificial neural networks (ANNs) and fuzzy rule-based systems (FRBSs) serve as fundamental model frameworks, which are alternatives to statistical inference methods. The accepted papers involve a variety of data-driven modelling and data analytics techniques and contribute to a wide range of application areas, including transportation, environment, telecommunication, automatic control, product design, and finance. Q. Wang et al. combined the partial least square (PLS) approach with the back-propagation neural network (BPNN) and the radial basis function neural network (RBFNN) to predict short-term wind power.
doi_str_mv 10.1155/2018/2576239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120106854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120106854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b59f5059036627b4132c0f3602a0b9fd39f20a7fe90a5e66bd44f3b6126392d83</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKc3P0DAo9a9JE3aHsc2dTDxMsFbSNtkZnRpTTKH397W7ezpPd7_xx_eD6FbAo-EcD6hQPIJ5ZmgrDhDI8IFSzhJs_N-B5omhLKPS3QVwhaAEk7yEVrP2l23jyra1qkGL13UTWM32lUaW4fnKqpk7u23dvi1rYfMbbByNV7GgBduY53WfrhNu66x1V9PuEYXRjVB35zmGL0_Ldazl2T19rycTVdJxVgWk5IXhgMvgAlBszIljFZgmACqoCxMzQpDQWVGF6C4FqKs09SwUhAqWEHrnI3R3bG38-3XXocot-3e938ESUkvA0TO0556OFKVb0Pw2sjO253yP5KAHLzJwZs8eevx-yP-aV2tDvZ_-hdpYWvJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120106854</pqid></control><display><type>article</type><title>Computational Intelligence in Data-Driven Modelling and Its Engineering Applications</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Qian ; Spurgeon, Sarah ; Xu, Li ; Yu, Dingli</creator><creatorcontrib>Zhang, Qian ; Spurgeon, Sarah ; Xu, Li ; Yu, Dingli</creatorcontrib><description>[...]artificial neural networks (ANNs) and fuzzy rule-based systems (FRBSs) serve as fundamental model frameworks, which are alternatives to statistical inference methods. The accepted papers involve a variety of data-driven modelling and data analytics techniques and contribute to a wide range of application areas, including transportation, environment, telecommunication, automatic control, product design, and finance. Q. Wang et al. combined the partial least square (PLS) approach with the back-propagation neural network (BPNN) and the radial basis function neural network (RBFNN) to predict short-term wind power.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/2576239</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automatic control ; Back propagation networks ; Control algorithms ; Engineering ; Experiments ; Explicit knowledge ; Fuzzy logic ; Fuzzy systems ; Neural networks ; Product design ; Radial basis function ; Securities markets ; Statistical inference ; Statistical methods ; Wind power</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018, p.1-2</ispartof><rights>Copyright © 2018 Qian Zhang et al.</rights><rights>Copyright © 2018 Qian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b59f5059036627b4132c0f3602a0b9fd39f20a7fe90a5e66bd44f3b6126392d83</citedby><orcidid>0000-0002-0651-469X ; 0000-0002-6642-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Spurgeon, Sarah</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Yu, Dingli</creatorcontrib><title>Computational Intelligence in Data-Driven Modelling and Its Engineering Applications</title><title>Mathematical problems in engineering</title><description>[...]artificial neural networks (ANNs) and fuzzy rule-based systems (FRBSs) serve as fundamental model frameworks, which are alternatives to statistical inference methods. The accepted papers involve a variety of data-driven modelling and data analytics techniques and contribute to a wide range of application areas, including transportation, environment, telecommunication, automatic control, product design, and finance. Q. Wang et al. combined the partial least square (PLS) approach with the back-propagation neural network (BPNN) and the radial basis function neural network (RBFNN) to predict short-term wind power.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Back propagation networks</subject><subject>Control algorithms</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Explicit knowledge</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Neural networks</subject><subject>Product design</subject><subject>Radial basis function</subject><subject>Securities markets</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Wind power</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFLwzAUx4MoOKc3P0DAo9a9JE3aHsc2dTDxMsFbSNtkZnRpTTKH397W7ezpPd7_xx_eD6FbAo-EcD6hQPIJ5ZmgrDhDI8IFSzhJs_N-B5omhLKPS3QVwhaAEk7yEVrP2l23jyra1qkGL13UTWM32lUaW4fnKqpk7u23dvi1rYfMbbByNV7GgBduY53WfrhNu66x1V9PuEYXRjVB35zmGL0_Ldazl2T19rycTVdJxVgWk5IXhgMvgAlBszIljFZgmACqoCxMzQpDQWVGF6C4FqKs09SwUhAqWEHrnI3R3bG38-3XXocot-3e938ESUkvA0TO0556OFKVb0Pw2sjO253yP5KAHLzJwZs8eevx-yP-aV2tDvZ_-hdpYWvJ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Qian</creator><creator>Spurgeon, Sarah</creator><creator>Xu, Li</creator><creator>Yu, Dingli</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0651-469X</orcidid><orcidid>https://orcid.org/0000-0002-6642-352X</orcidid></search><sort><creationdate>20180101</creationdate><title>Computational Intelligence in Data-Driven Modelling and Its Engineering Applications</title><author>Zhang, Qian ; Spurgeon, Sarah ; Xu, Li ; Yu, Dingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b59f5059036627b4132c0f3602a0b9fd39f20a7fe90a5e66bd44f3b6126392d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Back propagation networks</topic><topic>Control algorithms</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Explicit knowledge</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Neural networks</topic><topic>Product design</topic><topic>Radial basis function</topic><topic>Securities markets</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Spurgeon, Sarah</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Yu, Dingli</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Spurgeon, Sarah</au><au>Xu, Li</au><au>Yu, Dingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Intelligence in Data-Driven Modelling and Its Engineering Applications</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><spage>1</spage><epage>2</epage><pages>1-2</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>[...]artificial neural networks (ANNs) and fuzzy rule-based systems (FRBSs) serve as fundamental model frameworks, which are alternatives to statistical inference methods. The accepted papers involve a variety of data-driven modelling and data analytics techniques and contribute to a wide range of application areas, including transportation, environment, telecommunication, automatic control, product design, and finance. Q. Wang et al. combined the partial least square (PLS) approach with the back-propagation neural network (BPNN) and the radial basis function neural network (RBFNN) to predict short-term wind power.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2018/2576239</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-0651-469X</orcidid><orcidid>https://orcid.org/0000-0002-6642-352X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018, p.1-2
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2120106854
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Artificial intelligence
Artificial neural networks
Automatic control
Back propagation networks
Control algorithms
Engineering
Experiments
Explicit knowledge
Fuzzy logic
Fuzzy systems
Neural networks
Product design
Radial basis function
Securities markets
Statistical inference
Statistical methods
Wind power
title Computational Intelligence in Data-Driven Modelling and Its Engineering Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Intelligence%20in%20Data-Driven%20Modelling%20and%20Its%20Engineering%20Applications&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Qian&rft.date=2018-01-01&rft.volume=2018&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/2576239&rft_dat=%3Cproquest_cross%3E2120106854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120106854&rft_id=info:pmid/&rfr_iscdi=true