Minimizing the probability of ruin: Optimal per-loss reinsurance

We compute the optimal investment and reinsurance strategy for an insurance company that wishes to minimize its probability of ruin, when the risk process follows a compound Poisson process (CPP) and reinsurance is priced via the expected-value premium principle. We consider per-loss optimal reinsur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2018-09, Vol.82, p.181-190
Hauptverfasser: Liang, Xiaoqing, Young, Virginia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 181
container_title Insurance, mathematics & economics
container_volume 82
creator Liang, Xiaoqing
Young, Virginia R.
description We compute the optimal investment and reinsurance strategy for an insurance company that wishes to minimize its probability of ruin, when the risk process follows a compound Poisson process (CPP) and reinsurance is priced via the expected-value premium principle. We consider per-loss optimal reinsurance for the CPP after first determining optimal reinsurance for the diffusion that approximates this CPP. For both the CPP claim process and its diffusion approximation, the financial market in which the insurer invests follows the Black–Scholes model, namely, a single riskless asset that earns interest at a constant rate and a single risky asset whose price process follows a geometric Brownian motion. Under minimal assumptions about admissible forms of reinsurance, we show that optimal per-loss reinsurance is excess-of-loss. Therefore, our result extends the work of the optimality of excess-of-loss reinsurance to the problem of minimizing the probability of ruin.
doi_str_mv 10.1016/j.insmatheco.2018.07.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119945529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668718300015</els_id><sourcerecordid>2119945529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e159d51113ce6587dfa9f060e6a71188fc023aac6377c6fd9354839e032c0e683</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwDpaYE3zi-sYEVNykoi4wW65jg6M0CXaCVJ4eV0ViZDrLf_7LhxAGUgIBftWUoUtbM34425cVAVkSURLCjtAMpKAFU0wdo1mWioJzKU7RWUoNIQQUFzN08xK6sA3foXvH2QMPsd-YTWjDuMO9x3EK3TVeD2PYmhYPLhZtnxKOLodO0XTWnaMTb9rkLn7vHL093L8un4rV-vF5ebsq7AJgLBwwVTMAoNZxJkXtjfKEE8eNAJDSW1JRYyynQljua0XZQlLlCK1sFkk6R5cH39zwc3Jp1E0_xS5H6gpAqQVjlcoqeVDZmHtG5_UQc_W400D0npdu9B8vveelidCZV369O7y6vOIruKiTDS4vrEN0dtR1H_43-QH5bnie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119945529</pqid></control><display><type>article</type><title>Minimizing the probability of ruin: Optimal per-loss reinsurance</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liang, Xiaoqing ; Young, Virginia R.</creator><creatorcontrib>Liang, Xiaoqing ; Young, Virginia R.</creatorcontrib><description>We compute the optimal investment and reinsurance strategy for an insurance company that wishes to minimize its probability of ruin, when the risk process follows a compound Poisson process (CPP) and reinsurance is priced via the expected-value premium principle. We consider per-loss optimal reinsurance for the CPP after first determining optimal reinsurance for the diffusion that approximates this CPP. For both the CPP claim process and its diffusion approximation, the financial market in which the insurer invests follows the Black–Scholes model, namely, a single riskless asset that earns interest at a constant rate and a single risky asset whose price process follows a geometric Brownian motion. Under minimal assumptions about admissible forms of reinsurance, we show that optimal per-loss reinsurance is excess-of-loss. Therefore, our result extends the work of the optimality of excess-of-loss reinsurance to the problem of minimizing the probability of ruin.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2018.07.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Assets ; Brownian motion ; Compound Poisson ; Diffusion approximation ; Financial market ; Insurance ; Optimal reinsurance ; Optimization ; Poisson density functions ; Probability ; Probability of ruin ; Reinsurance ; Statistical analysis ; Stochastic control ; Stochastic models</subject><ispartof>Insurance, mathematics &amp; economics, 2018-09, Vol.82, p.181-190</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e159d51113ce6587dfa9f060e6a71188fc023aac6377c6fd9354839e032c0e683</citedby><cites>FETCH-LOGICAL-c411t-e159d51113ce6587dfa9f060e6a71188fc023aac6377c6fd9354839e032c0e683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2018.07.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liang, Xiaoqing</creatorcontrib><creatorcontrib>Young, Virginia R.</creatorcontrib><title>Minimizing the probability of ruin: Optimal per-loss reinsurance</title><title>Insurance, mathematics &amp; economics</title><description>We compute the optimal investment and reinsurance strategy for an insurance company that wishes to minimize its probability of ruin, when the risk process follows a compound Poisson process (CPP) and reinsurance is priced via the expected-value premium principle. We consider per-loss optimal reinsurance for the CPP after first determining optimal reinsurance for the diffusion that approximates this CPP. For both the CPP claim process and its diffusion approximation, the financial market in which the insurer invests follows the Black–Scholes model, namely, a single riskless asset that earns interest at a constant rate and a single risky asset whose price process follows a geometric Brownian motion. Under minimal assumptions about admissible forms of reinsurance, we show that optimal per-loss reinsurance is excess-of-loss. Therefore, our result extends the work of the optimality of excess-of-loss reinsurance to the problem of minimizing the probability of ruin.</description><subject>Approximation</subject><subject>Assets</subject><subject>Brownian motion</subject><subject>Compound Poisson</subject><subject>Diffusion approximation</subject><subject>Financial market</subject><subject>Insurance</subject><subject>Optimal reinsurance</subject><subject>Optimization</subject><subject>Poisson density functions</subject><subject>Probability</subject><subject>Probability of ruin</subject><subject>Reinsurance</subject><subject>Statistical analysis</subject><subject>Stochastic control</subject><subject>Stochastic models</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwDpaYE3zi-sYEVNykoi4wW65jg6M0CXaCVJ4eV0ViZDrLf_7LhxAGUgIBftWUoUtbM34425cVAVkSURLCjtAMpKAFU0wdo1mWioJzKU7RWUoNIQQUFzN08xK6sA3foXvH2QMPsd-YTWjDuMO9x3EK3TVeD2PYmhYPLhZtnxKOLodO0XTWnaMTb9rkLn7vHL093L8un4rV-vF5ebsq7AJgLBwwVTMAoNZxJkXtjfKEE8eNAJDSW1JRYyynQljua0XZQlLlCK1sFkk6R5cH39zwc3Jp1E0_xS5H6gpAqQVjlcoqeVDZmHtG5_UQc_W400D0npdu9B8vveelidCZV369O7y6vOIruKiTDS4vrEN0dtR1H_43-QH5bnie</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Liang, Xiaoqing</creator><creator>Young, Virginia R.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20180901</creationdate><title>Minimizing the probability of ruin: Optimal per-loss reinsurance</title><author>Liang, Xiaoqing ; Young, Virginia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e159d51113ce6587dfa9f060e6a71188fc023aac6377c6fd9354839e032c0e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Assets</topic><topic>Brownian motion</topic><topic>Compound Poisson</topic><topic>Diffusion approximation</topic><topic>Financial market</topic><topic>Insurance</topic><topic>Optimal reinsurance</topic><topic>Optimization</topic><topic>Poisson density functions</topic><topic>Probability</topic><topic>Probability of ruin</topic><topic>Reinsurance</topic><topic>Statistical analysis</topic><topic>Stochastic control</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiaoqing</creatorcontrib><creatorcontrib>Young, Virginia R.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiaoqing</au><au>Young, Virginia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing the probability of ruin: Optimal per-loss reinsurance</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>82</volume><spage>181</spage><epage>190</epage><pages>181-190</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>We compute the optimal investment and reinsurance strategy for an insurance company that wishes to minimize its probability of ruin, when the risk process follows a compound Poisson process (CPP) and reinsurance is priced via the expected-value premium principle. We consider per-loss optimal reinsurance for the CPP after first determining optimal reinsurance for the diffusion that approximates this CPP. For both the CPP claim process and its diffusion approximation, the financial market in which the insurer invests follows the Black–Scholes model, namely, a single riskless asset that earns interest at a constant rate and a single risky asset whose price process follows a geometric Brownian motion. Under minimal assumptions about admissible forms of reinsurance, we show that optimal per-loss reinsurance is excess-of-loss. Therefore, our result extends the work of the optimality of excess-of-loss reinsurance to the problem of minimizing the probability of ruin.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2018.07.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2018-09, Vol.82, p.181-190
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_2119945529
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Assets
Brownian motion
Compound Poisson
Diffusion approximation
Financial market
Insurance
Optimal reinsurance
Optimization
Poisson density functions
Probability
Probability of ruin
Reinsurance
Statistical analysis
Stochastic control
Stochastic models
title Minimizing the probability of ruin: Optimal per-loss reinsurance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20the%20probability%20of%20ruin:%20Optimal%20per-loss%20reinsurance&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Liang,%20Xiaoqing&rft.date=2018-09-01&rft.volume=82&rft.spage=181&rft.epage=190&rft.pages=181-190&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2018.07.005&rft_dat=%3Cproquest_cross%3E2119945529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119945529&rft_id=info:pmid/&rft_els_id=S0167668718300015&rfr_iscdi=true