Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics

The (2+1)-dimensional generalized sine-Gordon equations can be used to describe the propagation of femtosecond laser pulse in a systems of two-level atoms. In this paper, bilinear forms of the equations have been constructed through variable transformation and Bell polynomial. Based on the bilinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-09, Vol.76 (6), p.1535-1543
Hauptverfasser: Meng, Gao-Qing, Pan, Yu-Song, Tan, Hao-feng, Xie, Xi-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1543
container_issue 6
container_start_page 1535
container_title Computers & mathematics with applications (1987)
container_volume 76
creator Meng, Gao-Qing
Pan, Yu-Song
Tan, Hao-feng
Xie, Xi-Yang
description The (2+1)-dimensional generalized sine-Gordon equations can be used to describe the propagation of femtosecond laser pulse in a systems of two-level atoms. In this paper, bilinear forms of the equations have been constructed through variable transformation and Bell polynomial. Based on the bilinear method and truncated Painlevé expansion, multi-soliton and quasi-periodic peakon solutions for such a system are derived, respectively. Overtaking elastic interactions between the two solitons and among the three solitons have been found. It is presented that the soliton with the smaller amplitude can travel faster than the larger one. Apart from the soliton, other type of nonlinear wave propagating in the systems of two-level atoms has been displayed, namely the quasi-periodic peakon. The peakon oscillates in both space and time, while its left and right derivatives at peak point are relatively large, which means the electric-field intensity of the femtosecond laser pulse is rather strong.
doi_str_mv 10.1016/j.camwa.2018.07.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119942678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122118303705</els_id><sourcerecordid>2119942678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bfc39424b61370964e75e82b7a92a70cf75dc99d788eecaaaf815a7d77f537913</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gssYBQgj-S2BkYqgoKUiUWmC3HuYCr1G7tBFR-PS5lZrrhvefV3YPQJSU5JbS6W-VGr790zgiVORE5IeURmlApeCaqSh6jCZG1zChj9BSdxbgihBSckQlqZk73u8EaHH0_Dta7iDsf8PAB-Jrd0pustWtwMQW6x-_gIOjefkOLo3WQLXxovcOwHfWBtQ477_qU6YD9JhXHc3TS6T7Cxd-corfHh9f5U7Z8WTzPZ8vMcE6HrOkMrwtWNBXlgtRVAaIEyRqha6YFMZ0oW1PXrZASwGitO0lLLVohupKLmvIpujr0boLfjhAHtfJjSGdHxSitU3clZNrihy0TfIwBOrUJdq3DTlGi9jLVSv3KVHuZigiVZCbq_kBBeuDTQlDRWHAGWhvADKr19l_-BzbXfu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119942678</pqid></control><display><type>article</type><title>Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meng, Gao-Qing ; Pan, Yu-Song ; Tan, Hao-feng ; Xie, Xi-Yang</creator><creatorcontrib>Meng, Gao-Qing ; Pan, Yu-Song ; Tan, Hao-feng ; Xie, Xi-Yang</creatorcontrib><description>The (2+1)-dimensional generalized sine-Gordon equations can be used to describe the propagation of femtosecond laser pulse in a systems of two-level atoms. In this paper, bilinear forms of the equations have been constructed through variable transformation and Bell polynomial. Based on the bilinear method and truncated Painlevé expansion, multi-soliton and quasi-periodic peakon solutions for such a system are derived, respectively. Overtaking elastic interactions between the two solitons and among the three solitons have been found. It is presented that the soliton with the smaller amplitude can travel faster than the larger one. Apart from the soliton, other type of nonlinear wave propagating in the systems of two-level atoms has been displayed, namely the quasi-periodic peakon. The peakon oscillates in both space and time, while its left and right derivatives at peak point are relatively large, which means the electric-field intensity of the femtosecond laser pulse is rather strong.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.07.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bell polynomial ; Bilinear method ; Combinatorial analysis ; Dimensional analysis ; Femtosecond pulses ; Generalized sine-Gordon equation ; Linear equations ; Mathematical analysis ; Multi-soliton solutions ; Nonlinear equations ; Nonlinear optics ; Optics ; Peakon ; Polynomials ; Propagation ; Pulse propagation ; Solitary waves ; Truncated Painlevé expansion ; Wave propagation</subject><ispartof>Computers &amp; mathematics with applications (1987), 2018-09, Vol.76 (6), p.1535-1543</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bfc39424b61370964e75e82b7a92a70cf75dc99d788eecaaaf815a7d77f537913</citedby><cites>FETCH-LOGICAL-c331t-bfc39424b61370964e75e82b7a92a70cf75dc99d788eecaaaf815a7d77f537913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122118303705$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Meng, Gao-Qing</creatorcontrib><creatorcontrib>Pan, Yu-Song</creatorcontrib><creatorcontrib>Tan, Hao-feng</creatorcontrib><creatorcontrib>Xie, Xi-Yang</creatorcontrib><title>Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics</title><title>Computers &amp; mathematics with applications (1987)</title><description>The (2+1)-dimensional generalized sine-Gordon equations can be used to describe the propagation of femtosecond laser pulse in a systems of two-level atoms. In this paper, bilinear forms of the equations have been constructed through variable transformation and Bell polynomial. Based on the bilinear method and truncated Painlevé expansion, multi-soliton and quasi-periodic peakon solutions for such a system are derived, respectively. Overtaking elastic interactions between the two solitons and among the three solitons have been found. It is presented that the soliton with the smaller amplitude can travel faster than the larger one. Apart from the soliton, other type of nonlinear wave propagating in the systems of two-level atoms has been displayed, namely the quasi-periodic peakon. The peakon oscillates in both space and time, while its left and right derivatives at peak point are relatively large, which means the electric-field intensity of the femtosecond laser pulse is rather strong.</description><subject>Bell polynomial</subject><subject>Bilinear method</subject><subject>Combinatorial analysis</subject><subject>Dimensional analysis</subject><subject>Femtosecond pulses</subject><subject>Generalized sine-Gordon equation</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Multi-soliton solutions</subject><subject>Nonlinear equations</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>Peakon</subject><subject>Polynomials</subject><subject>Propagation</subject><subject>Pulse propagation</subject><subject>Solitary waves</subject><subject>Truncated Painlevé expansion</subject><subject>Wave propagation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gssYBQgj-S2BkYqgoKUiUWmC3HuYCr1G7tBFR-PS5lZrrhvefV3YPQJSU5JbS6W-VGr790zgiVORE5IeURmlApeCaqSh6jCZG1zChj9BSdxbgihBSckQlqZk73u8EaHH0_Dta7iDsf8PAB-Jrd0pustWtwMQW6x-_gIOjefkOLo3WQLXxovcOwHfWBtQ477_qU6YD9JhXHc3TS6T7Cxd-corfHh9f5U7Z8WTzPZ8vMcE6HrOkMrwtWNBXlgtRVAaIEyRqha6YFMZ0oW1PXrZASwGitO0lLLVohupKLmvIpujr0boLfjhAHtfJjSGdHxSitU3clZNrihy0TfIwBOrUJdq3DTlGi9jLVSv3KVHuZigiVZCbq_kBBeuDTQlDRWHAGWhvADKr19l_-BzbXfu4</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Meng, Gao-Qing</creator><creator>Pan, Yu-Song</creator><creator>Tan, Hao-feng</creator><creator>Xie, Xi-Yang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180915</creationdate><title>Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics</title><author>Meng, Gao-Qing ; Pan, Yu-Song ; Tan, Hao-feng ; Xie, Xi-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bfc39424b61370964e75e82b7a92a70cf75dc99d788eecaaaf815a7d77f537913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bell polynomial</topic><topic>Bilinear method</topic><topic>Combinatorial analysis</topic><topic>Dimensional analysis</topic><topic>Femtosecond pulses</topic><topic>Generalized sine-Gordon equation</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Multi-soliton solutions</topic><topic>Nonlinear equations</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>Peakon</topic><topic>Polynomials</topic><topic>Propagation</topic><topic>Pulse propagation</topic><topic>Solitary waves</topic><topic>Truncated Painlevé expansion</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Gao-Qing</creatorcontrib><creatorcontrib>Pan, Yu-Song</creatorcontrib><creatorcontrib>Tan, Hao-feng</creatorcontrib><creatorcontrib>Xie, Xi-Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Gao-Qing</au><au>Pan, Yu-Song</au><au>Tan, Hao-feng</au><au>Xie, Xi-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>76</volume><issue>6</issue><spage>1535</spage><epage>1543</epage><pages>1535-1543</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The (2+1)-dimensional generalized sine-Gordon equations can be used to describe the propagation of femtosecond laser pulse in a systems of two-level atoms. In this paper, bilinear forms of the equations have been constructed through variable transformation and Bell polynomial. Based on the bilinear method and truncated Painlevé expansion, multi-soliton and quasi-periodic peakon solutions for such a system are derived, respectively. Overtaking elastic interactions between the two solitons and among the three solitons have been found. It is presented that the soliton with the smaller amplitude can travel faster than the larger one. Apart from the soliton, other type of nonlinear wave propagating in the systems of two-level atoms has been displayed, namely the quasi-periodic peakon. The peakon oscillates in both space and time, while its left and right derivatives at peak point are relatively large, which means the electric-field intensity of the femtosecond laser pulse is rather strong.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.07.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2018-09, Vol.76 (6), p.1535-1543
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2119942678
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bell polynomial
Bilinear method
Combinatorial analysis
Dimensional analysis
Femtosecond pulses
Generalized sine-Gordon equation
Linear equations
Mathematical analysis
Multi-soliton solutions
Nonlinear equations
Nonlinear optics
Optics
Peakon
Polynomials
Propagation
Pulse propagation
Solitary waves
Truncated Painlevé expansion
Wave propagation
title Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20solutions%20for%20the%20(2+1)-dimensional%20generalized%20sine-Gordon%20equations%20in%20nonlinear%20optics&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Meng,%20Gao-Qing&rft.date=2018-09-15&rft.volume=76&rft.issue=6&rft.spage=1535&rft.epage=1543&rft.pages=1535-1543&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.07.005&rft_dat=%3Cproquest_cross%3E2119942678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119942678&rft_id=info:pmid/&rft_els_id=S0898122118303705&rfr_iscdi=true