Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability

Realization of safe electrochemical energy storages with high energy density and long cycle life along with the high power density enabling fast charging is a major challenge. Here, a strategy to realize high‐performance aqueous energy storages using porous Mn3O4 (p‐MG) positive and porous Fe2O3 (p‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-10, Vol.28 (42), p.n/a
Hauptverfasser: Choi, Jae Won, Ock, Il Woo, Kim, Keon‐Han, Jeong, Hyung Mo, Kang, Jeung Ku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 28
creator Choi, Jae Won
Ock, Il Woo
Kim, Keon‐Han
Jeong, Hyung Mo
Kang, Jeung Ku
description Realization of safe electrochemical energy storages with high energy density and long cycle life along with the high power density enabling fast charging is a major challenge. Here, a strategy to realize high‐performance aqueous energy storages using porous Mn3O4 (p‐MG) positive and porous Fe2O3 (p‐FG) negative electrodes, where granular nanoclusters composing nanoparticles are produced on graphene through lithiation‐induced conversion and the shortened ion diffusion lengths in p‐MG and p‐FG give fast charging rate and excellent cycle stability is reported. Furthermore, it is found from cyclic voltammetry curves and specific capacitances that porous metal oxide structures play mainly as redox reaction sites, while graphene structures provide electrical conductivity to active sites. Indeed, the full‐cell configuration of p‐MG and p‐FG in a hybrid capacitor exhibits a distinguished high energy density exceeding those of aqueous batteries, in addition to excellent capacity retention over 30 000 redox cycles and the energy density 2.5‐fold higher than that of its counterpart with pristine Mn3O4 and Fe2O3 nanocrystals. Additionally, this capacitor shows the high power density allowing ultrafast charging in that the full cells in series can be charged within several seconds by the rapid USB charger, thus outperforming those of typical aqueous batteries by about 100‐fold. Aqueous hybrid capacitors assembled in full cell configurations of pseudocapacitive porous metal oxide nanocluster electrodes with the energy density exceeding those of aqueous batteries, while achieving excellent capacity retention over long 30 000 charging/discharging cycles and the high power density exceeding those of aqueous batteries by about 100‐fold are reported.
doi_str_mv 10.1002/adfm.201803695
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119941009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119941009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-c066b7d049a8468b70fb76b43ac5d8e2f22a406a6a9024f3374effd79d6ad9423</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw5TwS513sJOtsjqtsP5C2H9JSiVs0sceJq9RebKclf5NfRNKl5chpRvbzeDx6k-QzZ0vOWPoVlX5YpoyvWSbK1ZvkhAsuFhlL129fe_7jffIhhHvGeFFk-Unyez_a2FEwAZyG20CDchIPKE00jwS3zrshwBVF7OHml1EE12id7IcQyQfYWNk5TwqchQuPh44sgXYeNj8Hms0zS74dYR-dx5ZgS49GUoAnEzu4NG33AmzJBhNHQKtg52wL1Sh7M9V9xMb0z1f9fP5s3vXRo8YQoerQtzNXTZ8-gh-Tdxr7QJ_-1tPk7vzse3W52N1cfKs2u4XMVmK1kEyIplAsL3Gdi3VTMN0UoskzlCu1plSnKeZMoMCSpbnOsiInrVVRKoGqzNPsNPlyfPfg3bRtiPW9G7ydRtYp52WZT6mUE7U8UtK7EDzp-uDNA_qx5qyec6vn3OrX3CahPApPpqfxP3S92Z5f_XP_AO0FoUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119941009</pqid></control><display><type>article</type><title>Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, Jae Won ; Ock, Il Woo ; Kim, Keon‐Han ; Jeong, Hyung Mo ; Kang, Jeung Ku</creator><creatorcontrib>Choi, Jae Won ; Ock, Il Woo ; Kim, Keon‐Han ; Jeong, Hyung Mo ; Kang, Jeung Ku</creatorcontrib><description>Realization of safe electrochemical energy storages with high energy density and long cycle life along with the high power density enabling fast charging is a major challenge. Here, a strategy to realize high‐performance aqueous energy storages using porous Mn3O4 (p‐MG) positive and porous Fe2O3 (p‐FG) negative electrodes, where granular nanoclusters composing nanoparticles are produced on graphene through lithiation‐induced conversion and the shortened ion diffusion lengths in p‐MG and p‐FG give fast charging rate and excellent cycle stability is reported. Furthermore, it is found from cyclic voltammetry curves and specific capacitances that porous metal oxide structures play mainly as redox reaction sites, while graphene structures provide electrical conductivity to active sites. Indeed, the full‐cell configuration of p‐MG and p‐FG in a hybrid capacitor exhibits a distinguished high energy density exceeding those of aqueous batteries, in addition to excellent capacity retention over 30 000 redox cycles and the energy density 2.5‐fold higher than that of its counterpart with pristine Mn3O4 and Fe2O3 nanocrystals. Additionally, this capacitor shows the high power density allowing ultrafast charging in that the full cells in series can be charged within several seconds by the rapid USB charger, thus outperforming those of typical aqueous batteries by about 100‐fold. Aqueous hybrid capacitors assembled in full cell configurations of pseudocapacitive porous metal oxide nanocluster electrodes with the energy density exceeding those of aqueous batteries, while achieving excellent capacity retention over long 30 000 charging/discharging cycles and the high power density exceeding those of aqueous batteries by about 100‐fold are reported.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201803695</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aqueous hybrid capacitors ; Batteries ; Capacitors ; Charge density ; Charging ; Data buses ; Diffusion rate ; Electrical resistivity ; Energy ; Energy storage ; Flux density ; Graphene ; high energy density ; Ion diffusion ; long cycle life ; Manganese oxides ; Materials science ; Metal oxides ; Nanoclusters ; Nanoparticles ; pseudocapacitive porous metal oxide nanocluster electrodes ; pseudocapacitors ; Stability ; ultrafast charging capability</subject><ispartof>Advanced functional materials, 2018-10, Vol.28 (42), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-c066b7d049a8468b70fb76b43ac5d8e2f22a406a6a9024f3374effd79d6ad9423</citedby><cites>FETCH-LOGICAL-c3565-c066b7d049a8468b70fb76b43ac5d8e2f22a406a6a9024f3374effd79d6ad9423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201803695$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201803695$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Choi, Jae Won</creatorcontrib><creatorcontrib>Ock, Il Woo</creatorcontrib><creatorcontrib>Kim, Keon‐Han</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Kang, Jeung Ku</creatorcontrib><title>Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability</title><title>Advanced functional materials</title><description>Realization of safe electrochemical energy storages with high energy density and long cycle life along with the high power density enabling fast charging is a major challenge. Here, a strategy to realize high‐performance aqueous energy storages using porous Mn3O4 (p‐MG) positive and porous Fe2O3 (p‐FG) negative electrodes, where granular nanoclusters composing nanoparticles are produced on graphene through lithiation‐induced conversion and the shortened ion diffusion lengths in p‐MG and p‐FG give fast charging rate and excellent cycle stability is reported. Furthermore, it is found from cyclic voltammetry curves and specific capacitances that porous metal oxide structures play mainly as redox reaction sites, while graphene structures provide electrical conductivity to active sites. Indeed, the full‐cell configuration of p‐MG and p‐FG in a hybrid capacitor exhibits a distinguished high energy density exceeding those of aqueous batteries, in addition to excellent capacity retention over 30 000 redox cycles and the energy density 2.5‐fold higher than that of its counterpart with pristine Mn3O4 and Fe2O3 nanocrystals. Additionally, this capacitor shows the high power density allowing ultrafast charging in that the full cells in series can be charged within several seconds by the rapid USB charger, thus outperforming those of typical aqueous batteries by about 100‐fold. Aqueous hybrid capacitors assembled in full cell configurations of pseudocapacitive porous metal oxide nanocluster electrodes with the energy density exceeding those of aqueous batteries, while achieving excellent capacity retention over long 30 000 charging/discharging cycles and the high power density exceeding those of aqueous batteries by about 100‐fold are reported.</description><subject>aqueous hybrid capacitors</subject><subject>Batteries</subject><subject>Capacitors</subject><subject>Charge density</subject><subject>Charging</subject><subject>Data buses</subject><subject>Diffusion rate</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>high energy density</subject><subject>Ion diffusion</subject><subject>long cycle life</subject><subject>Manganese oxides</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Nanoclusters</subject><subject>Nanoparticles</subject><subject>pseudocapacitive porous metal oxide nanocluster electrodes</subject><subject>pseudocapacitors</subject><subject>Stability</subject><subject>ultrafast charging capability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEqVw5TwS513sJOtsjqtsP5C2H9JSiVs0sceJq9RebKclf5NfRNKl5chpRvbzeDx6k-QzZ0vOWPoVlX5YpoyvWSbK1ZvkhAsuFhlL129fe_7jffIhhHvGeFFk-Unyez_a2FEwAZyG20CDchIPKE00jwS3zrshwBVF7OHml1EE12id7IcQyQfYWNk5TwqchQuPh44sgXYeNj8Hms0zS74dYR-dx5ZgS49GUoAnEzu4NG33AmzJBhNHQKtg52wL1Sh7M9V9xMb0z1f9fP5s3vXRo8YQoerQtzNXTZ8-gh-Tdxr7QJ_-1tPk7vzse3W52N1cfKs2u4XMVmK1kEyIplAsL3Gdi3VTMN0UoskzlCu1plSnKeZMoMCSpbnOsiInrVVRKoGqzNPsNPlyfPfg3bRtiPW9G7ydRtYp52WZT6mUE7U8UtK7EDzp-uDNA_qx5qyec6vn3OrX3CahPApPpqfxP3S92Z5f_XP_AO0FoUg</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Choi, Jae Won</creator><creator>Ock, Il Woo</creator><creator>Kim, Keon‐Han</creator><creator>Jeong, Hyung Mo</creator><creator>Kang, Jeung Ku</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181017</creationdate><title>Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability</title><author>Choi, Jae Won ; Ock, Il Woo ; Kim, Keon‐Han ; Jeong, Hyung Mo ; Kang, Jeung Ku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-c066b7d049a8468b70fb76b43ac5d8e2f22a406a6a9024f3374effd79d6ad9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aqueous hybrid capacitors</topic><topic>Batteries</topic><topic>Capacitors</topic><topic>Charge density</topic><topic>Charging</topic><topic>Data buses</topic><topic>Diffusion rate</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>high energy density</topic><topic>Ion diffusion</topic><topic>long cycle life</topic><topic>Manganese oxides</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Nanoclusters</topic><topic>Nanoparticles</topic><topic>pseudocapacitive porous metal oxide nanocluster electrodes</topic><topic>pseudocapacitors</topic><topic>Stability</topic><topic>ultrafast charging capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jae Won</creatorcontrib><creatorcontrib>Ock, Il Woo</creatorcontrib><creatorcontrib>Kim, Keon‐Han</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Kang, Jeung Ku</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jae Won</au><au>Ock, Il Woo</au><au>Kim, Keon‐Han</au><au>Jeong, Hyung Mo</au><au>Kang, Jeung Ku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability</atitle><jtitle>Advanced functional materials</jtitle><date>2018-10-17</date><risdate>2018</risdate><volume>28</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Realization of safe electrochemical energy storages with high energy density and long cycle life along with the high power density enabling fast charging is a major challenge. Here, a strategy to realize high‐performance aqueous energy storages using porous Mn3O4 (p‐MG) positive and porous Fe2O3 (p‐FG) negative electrodes, where granular nanoclusters composing nanoparticles are produced on graphene through lithiation‐induced conversion and the shortened ion diffusion lengths in p‐MG and p‐FG give fast charging rate and excellent cycle stability is reported. Furthermore, it is found from cyclic voltammetry curves and specific capacitances that porous metal oxide structures play mainly as redox reaction sites, while graphene structures provide electrical conductivity to active sites. Indeed, the full‐cell configuration of p‐MG and p‐FG in a hybrid capacitor exhibits a distinguished high energy density exceeding those of aqueous batteries, in addition to excellent capacity retention over 30 000 redox cycles and the energy density 2.5‐fold higher than that of its counterpart with pristine Mn3O4 and Fe2O3 nanocrystals. Additionally, this capacitor shows the high power density allowing ultrafast charging in that the full cells in series can be charged within several seconds by the rapid USB charger, thus outperforming those of typical aqueous batteries by about 100‐fold. Aqueous hybrid capacitors assembled in full cell configurations of pseudocapacitive porous metal oxide nanocluster electrodes with the energy density exceeding those of aqueous batteries, while achieving excellent capacity retention over long 30 000 charging/discharging cycles and the high power density exceeding those of aqueous batteries by about 100‐fold are reported.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201803695</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-10, Vol.28 (42), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2119941009
source Wiley Online Library Journals Frontfile Complete
subjects aqueous hybrid capacitors
Batteries
Capacitors
Charge density
Charging
Data buses
Diffusion rate
Electrical resistivity
Energy
Energy storage
Flux density
Graphene
high energy density
Ion diffusion
long cycle life
Manganese oxides
Materials science
Metal oxides
Nanoclusters
Nanoparticles
pseudocapacitive porous metal oxide nanocluster electrodes
pseudocapacitors
Stability
ultrafast charging capability
title Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Pseudocapacitive%20Porous%20Metal%20Oxide%20Nanoclusters%20Anchored%20on%20Graphene%20for%20Aqueous%20Energy%20Storage%20Devices%20with%20High%20Energy%20Density%20and%20Long%20Cycling%20Stability%20along%20with%20Ultrafast%20Charging%20Capability&rft.jtitle=Advanced%20functional%20materials&rft.au=Choi,%20Jae%20Won&rft.date=2018-10-17&rft.volume=28&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201803695&rft_dat=%3Cproquest_cross%3E2119941009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119941009&rft_id=info:pmid/&rfr_iscdi=true