Quark-gluon vertex: A perturbation theory primer and beyond
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-02, Vol.95 (3), p.034041, Article 034041 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.034041 |