A time domain reconstruction method of randomly sampled frequency sparse signal

In this paper stochastic sampling as a method of frequency sparse signal acquisition is presented. Basic principle of compressed sensing is reviewed, with emphasis on nonuniform sampling and signal reconstruction methods. A robust time domain reconstruction method of randomly sampled signal through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2018-10, Vol.127, p.68-77
Hauptverfasser: Andráš, Imrich, Dolinský, Pavol, Michaeli, Linus, Šaliga, Ján
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 68
container_title Measurement : journal of the International Measurement Confederation
container_volume 127
creator Andráš, Imrich
Dolinský, Pavol
Michaeli, Linus
Šaliga, Ján
description In this paper stochastic sampling as a method of frequency sparse signal acquisition is presented. Basic principle of compressed sensing is reviewed, with emphasis on nonuniform sampling and signal reconstruction methods. A robust time domain reconstruction method of randomly sampled signal through compressed sensing approach is proposed. The presented reconstruction algorithm is evaluated by means of simulations, with comparison to conventional compressed sensing reconstruction and the most common practical issues taken into account. Simulation results indicate that the proposed reconstruction method is resistent to high levels of quantization and uncorrelated noise. Experiments with real hardware were also performed, results of which confirm the ability of stochastic sampling framework to overcome the Nyquist limit of analog-to-digital converters.
doi_str_mv 10.1016/j.measurement.2018.05.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119939637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224118304548</els_id><sourcerecordid>2119939637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bef19ac93f667dc1332bea87e6f6f5f3172da5231b59935e3e9131177a0fbe7c3</originalsourceid><addsrcrecordid>eNqNkE9LAzEUxIMoWKvfIeJ517ykm22OpfgPCr0oeAvZ7Itm6W7WZCv025tSDx49PXjMDDM_Qm6BlcBA3ndljybtI_Y4TCVnsCxZVTJZnZEZLGtRLIC_n5MZ41IUnC_gklyl1DHGpFByRrYrOvkeaRt64wca0YYhTXFvJx8G2uP0GVoaHI1myJLdgSbTjztsqYv4tcfB5s9oYkKa_MdgdtfkwpldwpvfOydvjw-v6-dis316Wa82hRULNRUNOlDGKuGkrFsLQvAGzbJG6aSrnICat6biAppKKVGhQAUCoK4Ncw3WVszJ3Sl3jCH3SJPuwj7mAklzgOxRUtRZpU4qG0NKEZ0eo-9NPGhg-shPd_oPP33kp1mlM7_sXZ-8mGd8e4w6WZ8HY-szpUm3wf8j5Qc9zIDO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119939637</pqid></control><display><type>article</type><title>A time domain reconstruction method of randomly sampled frequency sparse signal</title><source>Elsevier ScienceDirect Journals</source><creator>Andráš, Imrich ; Dolinský, Pavol ; Michaeli, Linus ; Šaliga, Ján</creator><creatorcontrib>Andráš, Imrich ; Dolinský, Pavol ; Michaeli, Linus ; Šaliga, Ján</creatorcontrib><description>In this paper stochastic sampling as a method of frequency sparse signal acquisition is presented. Basic principle of compressed sensing is reviewed, with emphasis on nonuniform sampling and signal reconstruction methods. A robust time domain reconstruction method of randomly sampled signal through compressed sensing approach is proposed. The presented reconstruction algorithm is evaluated by means of simulations, with comparison to conventional compressed sensing reconstruction and the most common practical issues taken into account. Simulation results indicate that the proposed reconstruction method is resistent to high levels of quantization and uncorrelated noise. Experiments with real hardware were also performed, results of which confirm the ability of stochastic sampling framework to overcome the Nyquist limit of analog-to-digital converters.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2018.05.065</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Analog to digital conversion ; Analog to digital converters ; Analog-to-information conversion ; Compressed sensing ; Computer simulation ; Detection ; Experiments ; Measurement ; Nonuniform sampling ; Random sampling ; Sampling ; Signal reconstruction ; Simulation ; Sparse signal ; Stochastic models ; Stochastic sampling ; Time domain analysis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2018-10, Vol.127, p.68-77</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-bef19ac93f667dc1332bea87e6f6f5f3172da5231b59935e3e9131177a0fbe7c3</citedby><cites>FETCH-LOGICAL-c349t-bef19ac93f667dc1332bea87e6f6f5f3172da5231b59935e3e9131177a0fbe7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224118304548$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Andráš, Imrich</creatorcontrib><creatorcontrib>Dolinský, Pavol</creatorcontrib><creatorcontrib>Michaeli, Linus</creatorcontrib><creatorcontrib>Šaliga, Ján</creatorcontrib><title>A time domain reconstruction method of randomly sampled frequency sparse signal</title><title>Measurement : journal of the International Measurement Confederation</title><description>In this paper stochastic sampling as a method of frequency sparse signal acquisition is presented. Basic principle of compressed sensing is reviewed, with emphasis on nonuniform sampling and signal reconstruction methods. A robust time domain reconstruction method of randomly sampled signal through compressed sensing approach is proposed. The presented reconstruction algorithm is evaluated by means of simulations, with comparison to conventional compressed sensing reconstruction and the most common practical issues taken into account. Simulation results indicate that the proposed reconstruction method is resistent to high levels of quantization and uncorrelated noise. Experiments with real hardware were also performed, results of which confirm the ability of stochastic sampling framework to overcome the Nyquist limit of analog-to-digital converters.</description><subject>Algorithms</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Analog-to-information conversion</subject><subject>Compressed sensing</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Experiments</subject><subject>Measurement</subject><subject>Nonuniform sampling</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Signal reconstruction</subject><subject>Simulation</subject><subject>Sparse signal</subject><subject>Stochastic models</subject><subject>Stochastic sampling</subject><subject>Time domain analysis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEUxIMoWKvfIeJ517ykm22OpfgPCr0oeAvZ7Itm6W7WZCv025tSDx49PXjMDDM_Qm6BlcBA3ndljybtI_Y4TCVnsCxZVTJZnZEZLGtRLIC_n5MZ41IUnC_gklyl1DHGpFByRrYrOvkeaRt64wca0YYhTXFvJx8G2uP0GVoaHI1myJLdgSbTjztsqYv4tcfB5s9oYkKa_MdgdtfkwpldwpvfOydvjw-v6-dis316Wa82hRULNRUNOlDGKuGkrFsLQvAGzbJG6aSrnICat6biAppKKVGhQAUCoK4Ncw3WVszJ3Sl3jCH3SJPuwj7mAklzgOxRUtRZpU4qG0NKEZ0eo-9NPGhg-shPd_oPP33kp1mlM7_sXZ-8mGd8e4w6WZ8HY-szpUm3wf8j5Qc9zIDO</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Andráš, Imrich</creator><creator>Dolinský, Pavol</creator><creator>Michaeli, Linus</creator><creator>Šaliga, Ján</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201810</creationdate><title>A time domain reconstruction method of randomly sampled frequency sparse signal</title><author>Andráš, Imrich ; Dolinský, Pavol ; Michaeli, Linus ; Šaliga, Ján</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bef19ac93f667dc1332bea87e6f6f5f3172da5231b59935e3e9131177a0fbe7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Analog-to-information conversion</topic><topic>Compressed sensing</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Experiments</topic><topic>Measurement</topic><topic>Nonuniform sampling</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Signal reconstruction</topic><topic>Simulation</topic><topic>Sparse signal</topic><topic>Stochastic models</topic><topic>Stochastic sampling</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andráš, Imrich</creatorcontrib><creatorcontrib>Dolinský, Pavol</creatorcontrib><creatorcontrib>Michaeli, Linus</creatorcontrib><creatorcontrib>Šaliga, Ján</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andráš, Imrich</au><au>Dolinský, Pavol</au><au>Michaeli, Linus</au><au>Šaliga, Ján</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time domain reconstruction method of randomly sampled frequency sparse signal</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2018-10</date><risdate>2018</risdate><volume>127</volume><spage>68</spage><epage>77</epage><pages>68-77</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>In this paper stochastic sampling as a method of frequency sparse signal acquisition is presented. Basic principle of compressed sensing is reviewed, with emphasis on nonuniform sampling and signal reconstruction methods. A robust time domain reconstruction method of randomly sampled signal through compressed sensing approach is proposed. The presented reconstruction algorithm is evaluated by means of simulations, with comparison to conventional compressed sensing reconstruction and the most common practical issues taken into account. Simulation results indicate that the proposed reconstruction method is resistent to high levels of quantization and uncorrelated noise. Experiments with real hardware were also performed, results of which confirm the ability of stochastic sampling framework to overcome the Nyquist limit of analog-to-digital converters.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2018.05.065</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2018-10, Vol.127, p.68-77
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2119939637
source Elsevier ScienceDirect Journals
subjects Algorithms
Analog to digital conversion
Analog to digital converters
Analog-to-information conversion
Compressed sensing
Computer simulation
Detection
Experiments
Measurement
Nonuniform sampling
Random sampling
Sampling
Signal reconstruction
Simulation
Sparse signal
Stochastic models
Stochastic sampling
Time domain analysis
title A time domain reconstruction method of randomly sampled frequency sparse signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time%20domain%20reconstruction%20method%20of%20randomly%20sampled%20frequency%20sparse%20signal&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Andr%C3%A1%C5%A1,%20Imrich&rft.date=2018-10&rft.volume=127&rft.spage=68&rft.epage=77&rft.pages=68-77&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2018.05.065&rft_dat=%3Cproquest_cross%3E2119939637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119939637&rft_id=info:pmid/&rft_els_id=S0263224118304548&rfr_iscdi=true