Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt

In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2018-10, Vol.216, p.647-657
Hauptverfasser: Lambert, Marie-Julie, Traoré, Pierre C. Sibiry, Blaes, Xavier, Baret, Philippe, Defourny, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue
container_start_page 647
container_title Remote sensing of environment
container_volume 216
creator Lambert, Marie-Julie
Traoré, Pierre C. Sibiry
Blaes, Xavier
Baret, Philippe
Defourny, Pierre
description In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type. •Crop production assessed with a maximum model uncertainty of 0.33% at village level•Crop type map from Sentinel-2 achieves 80% OA.•Maximum LAI is the best yield estimator (among various vegetation indices).•Red edge and NIR bands are the more important features for crop type classification.
doi_str_mv 10.1016/j.rse.2018.06.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119937486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425718303146</els_id><sourcerecordid>2119937486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-8596187cc63e49f249504495e8b093969a3b6a62824346feb271521aa70b32cf3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gsMTAl-CtOLCZUlQ-piAGYLce5FEduUmy3Ev8eV2VmuVvuuXvvQeiakpISKu-GMkQoGaFNSWRJuDxBM9rUqiA1EadoRggXhWBVfY4uYhwIoVVT0xkaljG5jUluXOO4Md5_Tb6DgG2YthFvw9TtbHLTiE3Ce-e9WQP2sAeP-zBt8DuMGQVfMJzXAI4QHETsRvxqvLuN2E4pZboFny7RWW98hKu_Pkefj8uPxXOxent6WTysCiuaOhVNpWRObq3kIFTPhKqIyAWaliiupDK8lUayhgkuZA8tq2nFqDE1aTmzPZ-jm-PenP57BzHpYdqFMZ_UjFKleC0amafocSp_GmOAXm9DFhF-NCX6oFQPOivVB6WaSJ2VZub-yECOv3cQdLQORgudC2CT7ib3D_0L7Np-bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119937486</pqid></control><display><type>article</type><title>Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lambert, Marie-Julie ; Traoré, Pierre C. Sibiry ; Blaes, Xavier ; Baret, Philippe ; Defourny, Pierre</creator><creatorcontrib>Lambert, Marie-Julie ; Traoré, Pierre C. Sibiry ; Blaes, Xavier ; Baret, Philippe ; Defourny, Pierre</creatorcontrib><description>In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type. •Crop production assessed with a maximum model uncertainty of 0.33% at village level•Crop type map from Sentinel-2 achieves 80% OA.•Maximum LAI is the best yield estimator (among various vegetation indices).•Red edge and NIR bands are the more important features for crop type classification.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2018.06.036</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Agricultural land ; Agricultural management ; Agricultural production ; Computer simulation ; Corn ; Cotton ; Cotton belt ; Crop growth ; Crop production ; Crop yield ; Crops ; Estimates ; Food security ; Grain ; Growth conditions ; High resolution ; Image resolution ; Leaf area ; Leaf area index ; Mali ; Millet ; Peanuts ; Radiative transfer ; Rainfall ; Sentinel-2 ; Small farms ; Smallholder agriculture ; Soil fertility ; Soil management ; Sorghum ; Spatial variability ; Time series ; Uncertainty</subject><ispartof>Remote sensing of environment, 2018-10, Vol.216, p.647-657</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-8596187cc63e49f249504495e8b093969a3b6a62824346feb271521aa70b32cf3</citedby><cites>FETCH-LOGICAL-c487t-8596187cc63e49f249504495e8b093969a3b6a62824346feb271521aa70b32cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2018.06.036$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Lambert, Marie-Julie</creatorcontrib><creatorcontrib>Traoré, Pierre C. Sibiry</creatorcontrib><creatorcontrib>Blaes, Xavier</creatorcontrib><creatorcontrib>Baret, Philippe</creatorcontrib><creatorcontrib>Defourny, Pierre</creatorcontrib><title>Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt</title><title>Remote sensing of environment</title><description>In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type. •Crop production assessed with a maximum model uncertainty of 0.33% at village level•Crop type map from Sentinel-2 achieves 80% OA.•Maximum LAI is the best yield estimator (among various vegetation indices).•Red edge and NIR bands are the more important features for crop type classification.</description><subject>Agricultural land</subject><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Computer simulation</subject><subject>Corn</subject><subject>Cotton</subject><subject>Cotton belt</subject><subject>Crop growth</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Estimates</subject><subject>Food security</subject><subject>Grain</subject><subject>Growth conditions</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Mali</subject><subject>Millet</subject><subject>Peanuts</subject><subject>Radiative transfer</subject><subject>Rainfall</subject><subject>Sentinel-2</subject><subject>Small farms</subject><subject>Smallholder agriculture</subject><subject>Soil fertility</subject><subject>Soil management</subject><subject>Sorghum</subject><subject>Spatial variability</subject><subject>Time series</subject><subject>Uncertainty</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gsMTAl-CtOLCZUlQ-piAGYLce5FEduUmy3Ev8eV2VmuVvuuXvvQeiakpISKu-GMkQoGaFNSWRJuDxBM9rUqiA1EadoRggXhWBVfY4uYhwIoVVT0xkaljG5jUluXOO4Md5_Tb6DgG2YthFvw9TtbHLTiE3Ce-e9WQP2sAeP-zBt8DuMGQVfMJzXAI4QHETsRvxqvLuN2E4pZboFny7RWW98hKu_Pkefj8uPxXOxent6WTysCiuaOhVNpWRObq3kIFTPhKqIyAWaliiupDK8lUayhgkuZA8tq2nFqDE1aTmzPZ-jm-PenP57BzHpYdqFMZ_UjFKleC0amafocSp_GmOAXm9DFhF-NCX6oFQPOivVB6WaSJ2VZub-yECOv3cQdLQORgudC2CT7ib3D_0L7Np-bQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Lambert, Marie-Julie</creator><creator>Traoré, Pierre C. Sibiry</creator><creator>Blaes, Xavier</creator><creator>Baret, Philippe</creator><creator>Defourny, Pierre</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20181001</creationdate><title>Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt</title><author>Lambert, Marie-Julie ; Traoré, Pierre C. Sibiry ; Blaes, Xavier ; Baret, Philippe ; Defourny, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-8596187cc63e49f249504495e8b093969a3b6a62824346feb271521aa70b32cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural land</topic><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Computer simulation</topic><topic>Corn</topic><topic>Cotton</topic><topic>Cotton belt</topic><topic>Crop growth</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Estimates</topic><topic>Food security</topic><topic>Grain</topic><topic>Growth conditions</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Mali</topic><topic>Millet</topic><topic>Peanuts</topic><topic>Radiative transfer</topic><topic>Rainfall</topic><topic>Sentinel-2</topic><topic>Small farms</topic><topic>Smallholder agriculture</topic><topic>Soil fertility</topic><topic>Soil management</topic><topic>Sorghum</topic><topic>Spatial variability</topic><topic>Time series</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Marie-Julie</creatorcontrib><creatorcontrib>Traoré, Pierre C. Sibiry</creatorcontrib><creatorcontrib>Blaes, Xavier</creatorcontrib><creatorcontrib>Baret, Philippe</creatorcontrib><creatorcontrib>Defourny, Pierre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Marie-Julie</au><au>Traoré, Pierre C. Sibiry</au><au>Blaes, Xavier</au><au>Baret, Philippe</au><au>Defourny, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>216</volume><spage>647</spage><epage>657</epage><pages>647-657</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type. •Crop production assessed with a maximum model uncertainty of 0.33% at village level•Crop type map from Sentinel-2 achieves 80% OA.•Maximum LAI is the best yield estimator (among various vegetation indices).•Red edge and NIR bands are the more important features for crop type classification.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2018.06.036</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2018-10, Vol.216, p.647-657
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2119937486
source Access via ScienceDirect (Elsevier)
subjects Agricultural land
Agricultural management
Agricultural production
Computer simulation
Corn
Cotton
Cotton belt
Crop growth
Crop production
Crop yield
Crops
Estimates
Food security
Grain
Growth conditions
High resolution
Image resolution
Leaf area
Leaf area index
Mali
Millet
Peanuts
Radiative transfer
Rainfall
Sentinel-2
Small farms
Smallholder agriculture
Soil fertility
Soil management
Sorghum
Spatial variability
Time series
Uncertainty
title Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20smallholder%20crops%20production%20at%20village%20level%20from%20Sentinel-2%20time%20series%20in%20Mali's%20cotton%20belt&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Lambert,%20Marie-Julie&rft.date=2018-10-01&rft.volume=216&rft.spage=647&rft.epage=657&rft.pages=647-657&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2018.06.036&rft_dat=%3Cproquest_cross%3E2119937486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119937486&rft_id=info:pmid/&rft_els_id=S0034425718303146&rfr_iscdi=true