Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach
Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least on...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2018-11, Vol.28 (16), p.4931-4950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4950 |
---|---|
container_issue | 16 |
container_start_page | 4931 |
container_title | International journal of robust and nonlinear control |
container_volume | 28 |
creator | Zhu, Huawei Hou, Xiaorong |
description | Summary
This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1002/rnc.4296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119863171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119863171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</originalsourceid><addsrcrecordid>eNp10N9KwzAUBvAgCs4p-AgBb7zpzJ-uTbyToU4YKkOvQ5qesow2qUnHqE_gU_hwPomd00uvzoHz4zvwIXROyYQSwq6CM5OUyewAjSiRMqGMy8PdnspESMaP0UmMa0KGG0tHqF36YhM7PP_6-MTGuy74Glc-4I0zEDptHY5b25kVlNh5V1sHOuDW173zjdU1jn3soInX-FkH3UAHwb7rznqHffUXWEPAum2D12Z1io4qXUc4-51j9Hp3-zKbJ4un-4fZzSIxLJ1mic54znUJRSEkZWUpjKyAgpB8KvJckFJmvCQctEiF1pBODeO5KQspheE0z_kYXexzh7dvG4idWvtNcMNLxSiVIhsUHdTlXpngYwxQqTbYRodeUaJ2faqhT7Xrc6DJnm5tDf2_Ti0fZz_-G2Mpeg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119863171</pqid></control><display><type>article</type><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Huawei ; Hou, Xiaorong</creator><creatorcontrib>Zhu, Huawei ; Hou, Xiaorong</creatorcontrib><description>Summary
This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4296</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Attenuation ; average dwell time ; Control systems design ; Decay rate ; dissipative Hamiltonian realization ; Dwell time ; Feedback ; feedback exponential stabilization ; H-infinity control ; L2 gain ; Liapunov functions ; Nonlinear control ; Nonlinear systems ; Parameterization ; parameterization of controller ; Passivity ; Polynomials ; Robust control ; Stabilization</subject><ispartof>International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4931-4950</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</citedby><cites>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</cites><orcidid>0000-0003-0057-2394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhu, Huawei</creatorcontrib><creatorcontrib>Hou, Xiaorong</creatorcontrib><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><title>International journal of robust and nonlinear control</title><description>Summary
This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</description><subject>Attenuation</subject><subject>average dwell time</subject><subject>Control systems design</subject><subject>Decay rate</subject><subject>dissipative Hamiltonian realization</subject><subject>Dwell time</subject><subject>Feedback</subject><subject>feedback exponential stabilization</subject><subject>H-infinity control</subject><subject>L2 gain</subject><subject>Liapunov functions</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameterization</subject><subject>parameterization of controller</subject><subject>Passivity</subject><subject>Polynomials</subject><subject>Robust control</subject><subject>Stabilization</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10N9KwzAUBvAgCs4p-AgBb7zpzJ-uTbyToU4YKkOvQ5qesow2qUnHqE_gU_hwPomd00uvzoHz4zvwIXROyYQSwq6CM5OUyewAjSiRMqGMy8PdnspESMaP0UmMa0KGG0tHqF36YhM7PP_6-MTGuy74Glc-4I0zEDptHY5b25kVlNh5V1sHOuDW173zjdU1jn3soInX-FkH3UAHwb7rznqHffUXWEPAum2D12Z1io4qXUc4-51j9Hp3-zKbJ4un-4fZzSIxLJ1mic54znUJRSEkZWUpjKyAgpB8KvJckFJmvCQctEiF1pBODeO5KQspheE0z_kYXexzh7dvG4idWvtNcMNLxSiVIhsUHdTlXpngYwxQqTbYRodeUaJ2faqhT7Xrc6DJnm5tDf2_Ti0fZz_-G2Mpeg8</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Zhu, Huawei</creator><creator>Hou, Xiaorong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0057-2394</orcidid></search><sort><creationdate>20181110</creationdate><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><author>Zhu, Huawei ; Hou, Xiaorong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>average dwell time</topic><topic>Control systems design</topic><topic>Decay rate</topic><topic>dissipative Hamiltonian realization</topic><topic>Dwell time</topic><topic>Feedback</topic><topic>feedback exponential stabilization</topic><topic>H-infinity control</topic><topic>L2 gain</topic><topic>Liapunov functions</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameterization</topic><topic>parameterization of controller</topic><topic>Passivity</topic><topic>Polynomials</topic><topic>Robust control</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huawei</creatorcontrib><creatorcontrib>Hou, Xiaorong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huawei</au><au>Hou, Xiaorong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2018-11-10</date><risdate>2018</risdate><volume>28</volume><issue>16</issue><spage>4931</spage><epage>4950</epage><pages>4931-4950</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4296</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0057-2394</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4931-4950 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2119863171 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Attenuation average dwell time Control systems design Decay rate dissipative Hamiltonian realization Dwell time Feedback feedback exponential stabilization H-infinity control L2 gain Liapunov functions Nonlinear control Nonlinear systems Parameterization parameterization of controller Passivity Polynomials Robust control Stabilization |
title | Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%E2%88%9E%20control%20for%20uncertain%20switched%20nonlinear%20polynomial%20systems:%20Parameterization%20of%20controller%20approach&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zhu,%20Huawei&rft.date=2018-11-10&rft.volume=28&rft.issue=16&rft.spage=4931&rft.epage=4950&rft.pages=4931-4950&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4296&rft_dat=%3Cproquest_cross%3E2119863171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119863171&rft_id=info:pmid/&rfr_iscdi=true |