Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach

Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2018-11, Vol.28 (16), p.4931-4950
Hauptverfasser: Zhu, Huawei, Hou, Xiaorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4950
container_issue 16
container_start_page 4931
container_title International journal of robust and nonlinear control
container_volume 28
creator Zhu, Huawei
Hou, Xiaorong
description Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.
doi_str_mv 10.1002/rnc.4296
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119863171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119863171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</originalsourceid><addsrcrecordid>eNp10N9KwzAUBvAgCs4p-AgBb7zpzJ-uTbyToU4YKkOvQ5qesow2qUnHqE_gU_hwPomd00uvzoHz4zvwIXROyYQSwq6CM5OUyewAjSiRMqGMy8PdnspESMaP0UmMa0KGG0tHqF36YhM7PP_6-MTGuy74Glc-4I0zEDptHY5b25kVlNh5V1sHOuDW173zjdU1jn3soInX-FkH3UAHwb7rznqHffUXWEPAum2D12Z1io4qXUc4-51j9Hp3-zKbJ4un-4fZzSIxLJ1mic54znUJRSEkZWUpjKyAgpB8KvJckFJmvCQctEiF1pBODeO5KQspheE0z_kYXexzh7dvG4idWvtNcMNLxSiVIhsUHdTlXpngYwxQqTbYRodeUaJ2faqhT7Xrc6DJnm5tDf2_Ti0fZz_-G2Mpeg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119863171</pqid></control><display><type>article</type><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Huawei ; Hou, Xiaorong</creator><creatorcontrib>Zhu, Huawei ; Hou, Xiaorong</creatorcontrib><description>Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4296</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Attenuation ; average dwell time ; Control systems design ; Decay rate ; dissipative Hamiltonian realization ; Dwell time ; Feedback ; feedback exponential stabilization ; H-infinity control ; L2 gain ; Liapunov functions ; Nonlinear control ; Nonlinear systems ; Parameterization ; parameterization of controller ; Passivity ; Polynomials ; Robust control ; Stabilization</subject><ispartof>International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4931-4950</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</citedby><cites>FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</cites><orcidid>0000-0003-0057-2394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhu, Huawei</creatorcontrib><creatorcontrib>Hou, Xiaorong</creatorcontrib><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><title>International journal of robust and nonlinear control</title><description>Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</description><subject>Attenuation</subject><subject>average dwell time</subject><subject>Control systems design</subject><subject>Decay rate</subject><subject>dissipative Hamiltonian realization</subject><subject>Dwell time</subject><subject>Feedback</subject><subject>feedback exponential stabilization</subject><subject>H-infinity control</subject><subject>L2 gain</subject><subject>Liapunov functions</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameterization</subject><subject>parameterization of controller</subject><subject>Passivity</subject><subject>Polynomials</subject><subject>Robust control</subject><subject>Stabilization</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10N9KwzAUBvAgCs4p-AgBb7zpzJ-uTbyToU4YKkOvQ5qesow2qUnHqE_gU_hwPomd00uvzoHz4zvwIXROyYQSwq6CM5OUyewAjSiRMqGMy8PdnspESMaP0UmMa0KGG0tHqF36YhM7PP_6-MTGuy74Glc-4I0zEDptHY5b25kVlNh5V1sHOuDW173zjdU1jn3soInX-FkH3UAHwb7rznqHffUXWEPAum2D12Z1io4qXUc4-51j9Hp3-zKbJ4un-4fZzSIxLJ1mic54znUJRSEkZWUpjKyAgpB8KvJckFJmvCQctEiF1pBODeO5KQspheE0z_kYXexzh7dvG4idWvtNcMNLxSiVIhsUHdTlXpngYwxQqTbYRodeUaJ2faqhT7Xrc6DJnm5tDf2_Ti0fZz_-G2Mpeg8</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Zhu, Huawei</creator><creator>Hou, Xiaorong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0057-2394</orcidid></search><sort><creationdate>20181110</creationdate><title>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</title><author>Zhu, Huawei ; Hou, Xiaorong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2456-a6373adebb8912dd8c9fe1e893587780d963d03ea848aae45c237cdb998c31773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>average dwell time</topic><topic>Control systems design</topic><topic>Decay rate</topic><topic>dissipative Hamiltonian realization</topic><topic>Dwell time</topic><topic>Feedback</topic><topic>feedback exponential stabilization</topic><topic>H-infinity control</topic><topic>L2 gain</topic><topic>Liapunov functions</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameterization</topic><topic>parameterization of controller</topic><topic>Passivity</topic><topic>Polynomials</topic><topic>Robust control</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huawei</creatorcontrib><creatorcontrib>Hou, Xiaorong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huawei</au><au>Hou, Xiaorong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2018-11-10</date><risdate>2018</risdate><volume>28</volume><issue>16</issue><spage>4931</spage><epage>4950</epage><pages>4931-4950</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper considers the global feedback exponential stabilization and L2 gain disturbance attenuation problems of the switched nonlinear polynomial systems with passive and nonpassive subsystems for any given average dwell time. In the existing result, it needs that there exists at least one open loop passive subsystem in the switched nonlinear system, which is unnecessary for the switched nonlinear polynomial system in this paper because the passivity of the subsystem can be obtained according to the passivity‐based feedback dissipative Hamiltonian realization. In addition, a parameterization of controller approach–based feedback exponential stabilization method of nonlinear polynomial system is described and utilized such that the Lyapunov function of the passive subsystem possesses the required decay rate to exponentially stabilize the switched nonlinear polynomial system. Comparing with the controller designed with the existing method, the obtained controller in this paper has much simpler structure and better performance. An example simulation is provided to illustrate the effectiveness of the proposed approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4296</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0057-2394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4931-4950
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2119863171
source Wiley Online Library Journals Frontfile Complete
subjects Attenuation
average dwell time
Control systems design
Decay rate
dissipative Hamiltonian realization
Dwell time
Feedback
feedback exponential stabilization
H-infinity control
L2 gain
Liapunov functions
Nonlinear control
Nonlinear systems
Parameterization
parameterization of controller
Passivity
Polynomials
Robust control
Stabilization
title Robust H∞ control for uncertain switched nonlinear polynomial systems: Parameterization of controller approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%E2%88%9E%20control%20for%20uncertain%20switched%20nonlinear%20polynomial%20systems:%20Parameterization%20of%20controller%20approach&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zhu,%20Huawei&rft.date=2018-11-10&rft.volume=28&rft.issue=16&rft.spage=4931&rft.epage=4950&rft.pages=4931-4950&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4296&rft_dat=%3Cproquest_cross%3E2119863171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119863171&rft_id=info:pmid/&rfr_iscdi=true