Emission Spectroscopy in the Undergraduate Laboratory
Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and h...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2003-12, Vol.80 (12), p.1455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1455 |
container_title | Journal of chemical education |
container_volume | 80 |
creator | Goode, Scott R Metz, Lori A |
description | Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers. |
doi_str_mv | 10.1021/ed080p1455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_211912326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>527466541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgUQpLPyCiIEBKXC2c6k9oqoFpEgM0DnyJ6SicbCTIf-eoCB1YbrhHr13egm5pnBPgdEHZ0FARwvEE7KgkoucciZOyQKmbS5RFOfkIqU9AGUoxYLg5tCk1IQ2e-uc6WNIJnRj1rRZ_-myXWtd_IjKDqp3WaV0iKoPcbwkZ159JXf1N5dkt928r5_z6vXpZf1Y5YqJVZ8jelPY0nMNEizVUvqSSwTjjRbaITcAhdB6hVY4DQUgggYOumSopVZ8SW7m3C6G78Glvt6HIbbTyZpRKinjrJzQ3YzM9H2KztddbA4qjjWF-reV-tjKhG9nrEw6hv0DfwCsbWA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211912326</pqid></control><display><type>article</type><title>Emission Spectroscopy in the Undergraduate Laboratory</title><source>American Chemical Society Journals</source><creator>Goode, Scott R ; Metz, Lori A</creator><creatorcontrib>Goode, Scott R ; Metz, Lori A</creatorcontrib><description>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed080p1455</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Chemistry ; Emission spectroscopy ; Experiments ; Fiber optics ; Laboratories ; Optical fibers ; Optics ; Personal computers ; Science education ; Spectroscopy ; Spectrum analysis ; Windows (computer programs)</subject><ispartof>Journal of chemical education, 2003-12, Vol.80 (12), p.1455</ispartof><rights>Copyright American Chemical Society Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed080p1455$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed080p1455$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Goode, Scott R</creatorcontrib><creatorcontrib>Metz, Lori A</creatorcontrib><title>Emission Spectroscopy in the Undergraduate Laboratory</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</description><subject>Chemistry</subject><subject>Emission spectroscopy</subject><subject>Experiments</subject><subject>Fiber optics</subject><subject>Laboratories</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Personal computers</subject><subject>Science education</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Windows (computer programs)</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgUQpLPyCiIEBKXC2c6k9oqoFpEgM0DnyJ6SicbCTIf-eoCB1YbrhHr13egm5pnBPgdEHZ0FARwvEE7KgkoucciZOyQKmbS5RFOfkIqU9AGUoxYLg5tCk1IQ2e-uc6WNIJnRj1rRZ_-myXWtd_IjKDqp3WaV0iKoPcbwkZ159JXf1N5dkt928r5_z6vXpZf1Y5YqJVZ8jelPY0nMNEizVUvqSSwTjjRbaITcAhdB6hVY4DQUgggYOumSopVZ8SW7m3C6G78Glvt6HIbbTyZpRKinjrJzQ3YzM9H2KztddbA4qjjWF-reV-tjKhG9nrEw6hv0DfwCsbWA0</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Goode, Scott R</creator><creator>Metz, Lori A</creator><general>Division of Chemical Education</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20031201</creationdate><title>Emission Spectroscopy in the Undergraduate Laboratory</title><author>Goode, Scott R ; Metz, Lori A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chemistry</topic><topic>Emission spectroscopy</topic><topic>Experiments</topic><topic>Fiber optics</topic><topic>Laboratories</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Personal computers</topic><topic>Science education</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goode, Scott R</creatorcontrib><creatorcontrib>Metz, Lori A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goode, Scott R</au><au>Metz, Lori A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission Spectroscopy in the Undergraduate Laboratory</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>80</volume><issue>12</issue><spage>1455</spage><pages>1455-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed080p1455</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2003-12, Vol.80 (12), p.1455 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_211912326 |
source | American Chemical Society Journals |
subjects | Chemistry Emission spectroscopy Experiments Fiber optics Laboratories Optical fibers Optics Personal computers Science education Spectroscopy Spectrum analysis Windows (computer programs) |
title | Emission Spectroscopy in the Undergraduate Laboratory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20Spectroscopy%20in%20the%20Undergraduate%20Laboratory&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Goode,%20Scott%20R&rft.date=2003-12-01&rft.volume=80&rft.issue=12&rft.spage=1455&rft.pages=1455-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed080p1455&rft_dat=%3Cproquest_cross%3E527466541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211912326&rft_id=info:pmid/&rfr_iscdi=true |