Emission Spectroscopy in the Undergraduate Laboratory

Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2003-12, Vol.80 (12), p.1455
Hauptverfasser: Goode, Scott R, Metz, Lori A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1455
container_title Journal of chemical education
container_volume 80
creator Goode, Scott R
Metz, Lori A
description Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.
doi_str_mv 10.1021/ed080p1455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_211912326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>527466541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgUQpLPyCiIEBKXC2c6k9oqoFpEgM0DnyJ6SicbCTIf-eoCB1YbrhHr13egm5pnBPgdEHZ0FARwvEE7KgkoucciZOyQKmbS5RFOfkIqU9AGUoxYLg5tCk1IQ2e-uc6WNIJnRj1rRZ_-myXWtd_IjKDqp3WaV0iKoPcbwkZ159JXf1N5dkt928r5_z6vXpZf1Y5YqJVZ8jelPY0nMNEizVUvqSSwTjjRbaITcAhdB6hVY4DQUgggYOumSopVZ8SW7m3C6G78Glvt6HIbbTyZpRKinjrJzQ3YzM9H2KztddbA4qjjWF-reV-tjKhG9nrEw6hv0DfwCsbWA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211912326</pqid></control><display><type>article</type><title>Emission Spectroscopy in the Undergraduate Laboratory</title><source>American Chemical Society Journals</source><creator>Goode, Scott R ; Metz, Lori A</creator><creatorcontrib>Goode, Scott R ; Metz, Lori A</creatorcontrib><description>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed080p1455</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Chemistry ; Emission spectroscopy ; Experiments ; Fiber optics ; Laboratories ; Optical fibers ; Optics ; Personal computers ; Science education ; Spectroscopy ; Spectrum analysis ; Windows (computer programs)</subject><ispartof>Journal of chemical education, 2003-12, Vol.80 (12), p.1455</ispartof><rights>Copyright American Chemical Society Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed080p1455$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed080p1455$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Goode, Scott R</creatorcontrib><creatorcontrib>Metz, Lori A</creatorcontrib><title>Emission Spectroscopy in the Undergraduate Laboratory</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</description><subject>Chemistry</subject><subject>Emission spectroscopy</subject><subject>Experiments</subject><subject>Fiber optics</subject><subject>Laboratories</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Personal computers</subject><subject>Science education</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Windows (computer programs)</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgUQpLPyCiIEBKXC2c6k9oqoFpEgM0DnyJ6SicbCTIf-eoCB1YbrhHr13egm5pnBPgdEHZ0FARwvEE7KgkoucciZOyQKmbS5RFOfkIqU9AGUoxYLg5tCk1IQ2e-uc6WNIJnRj1rRZ_-myXWtd_IjKDqp3WaV0iKoPcbwkZ159JXf1N5dkt928r5_z6vXpZf1Y5YqJVZ8jelPY0nMNEizVUvqSSwTjjRbaITcAhdB6hVY4DQUgggYOumSopVZ8SW7m3C6G78Glvt6HIbbTyZpRKinjrJzQ3YzM9H2KztddbA4qjjWF-reV-tjKhG9nrEw6hv0DfwCsbWA0</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Goode, Scott R</creator><creator>Metz, Lori A</creator><general>Division of Chemical Education</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20031201</creationdate><title>Emission Spectroscopy in the Undergraduate Laboratory</title><author>Goode, Scott R ; Metz, Lori A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-55fc4d6f3b090d1b99f63950cfcb8be53c0048bb75d8eb040550b030b625b9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chemistry</topic><topic>Emission spectroscopy</topic><topic>Experiments</topic><topic>Fiber optics</topic><topic>Laboratories</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Personal computers</topic><topic>Science education</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goode, Scott R</creatorcontrib><creatorcontrib>Metz, Lori A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goode, Scott R</au><au>Metz, Lori A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission Spectroscopy in the Undergraduate Laboratory</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>80</volume><issue>12</issue><spage>1455</spage><pages>1455-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>Simple lab experiments using an inexpensive, solid-state computerized spectrometer can help to introduce students to analytical emission spectroscopy. A series of experiments that employ an Ocean Optics spectrometer, a Windows PC, and a fiber optic pickup are described. Line spectra of mercury and hydrogen can be used for wavelength calibration and, in the case of hydrogen, used to determine the Rydberg constant and the spacing between the energy levels in hydrogen. Continuum sources include tungsten lamps and sunlight. Students can also examine mixed spectra; for example, the spectrum of a fluorescent light shows both line and continuum behavior as does the spectrum of a deuterium lamp. Molecular band emission is studied by obtaining the spectra of fireworks—our students used sparklers. The spectra of red, green, blue, and gold sparklers show both atomic lines and molecular bands. The wavelengths of the atomic lines, in conjunction with some basic reference tables, can be used to identify the composition of the sparkler; molecular bands are more difficult to assign, but are responsible for many of the colors observed. Bands arising from salts of barium, strontium, and copper are responsible for the green, red, and blue colors seen in commercially available sparklers.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed080p1455</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2003-12, Vol.80 (12), p.1455
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_211912326
source American Chemical Society Journals
subjects Chemistry
Emission spectroscopy
Experiments
Fiber optics
Laboratories
Optical fibers
Optics
Personal computers
Science education
Spectroscopy
Spectrum analysis
Windows (computer programs)
title Emission Spectroscopy in the Undergraduate Laboratory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20Spectroscopy%20in%20the%20Undergraduate%20Laboratory&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Goode,%20Scott%20R&rft.date=2003-12-01&rft.volume=80&rft.issue=12&rft.spage=1455&rft.pages=1455-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed080p1455&rft_dat=%3Cproquest_cross%3E527466541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211912326&rft_id=info:pmid/&rfr_iscdi=true