General Potential Energy Surfaces for Catalytic Processes
Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are for...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 1999-03, Vol.76 (3), p.440 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 440 |
container_title | Journal of chemical education |
container_volume | 76 |
creator | Bauer, S. H |
description | Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity. |
doi_str_mv | 10.1021/ed076p440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_211905192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39356230</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-2b7d498b56d400efe662481a967aec52e991f8a76d5170524ef5211237f0c0423</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMoWFcP_oMiePBQnUmTNjlK2V2FBRfUc8m2E-lS2zVpD_33ZqnowdMb3ny8B4-xa4R7BI4PVEOeHYSAExahTlWCKVenLILwTLRU4pxdeL8HQC61ipheU0fOtPG2H6gbmnAtg_Exxa-js6YiH9vexYUZTDsNTRVvXR9MT_6SnVnTerr60QV7Xy3fiqdk87J-Lh43ieFCDAnf5bXQaiezWgCQpSzjQqHRWW6okpy0RqtMntUSc5BckJUckae5hQoETxfsZs49uP5rJD-U-350XagsA6dBoj5CdzNUud57R7Y8uObTuKlEKI_DlL_DBPZ2Zk3l_7L-c99cT1-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211905192</pqid></control><display><type>article</type><title>General Potential Energy Surfaces for Catalytic Processes</title><source>ACS Publications</source><creator>Bauer, S. H</creator><creatorcontrib>Bauer, S. H</creatorcontrib><description>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed076p440</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Catalysis ; Catalysts ; Chemical reactions ; Chemistry ; Metal clusters ; Potential energy ; Substrates</subject><ispartof>Journal of chemical education, 1999-03, Vol.76 (3), p.440</ispartof><rights>Copyright American Chemical Society Mar 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed076p440$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed076p440$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Bauer, S. H</creatorcontrib><title>General Potential Energy Surfaces for Catalytic Processes</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Metal clusters</subject><subject>Potential energy</subject><subject>Substrates</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEFLxDAQhYMoWFcP_oMiePBQnUmTNjlK2V2FBRfUc8m2E-lS2zVpD_33ZqnowdMb3ny8B4-xa4R7BI4PVEOeHYSAExahTlWCKVenLILwTLRU4pxdeL8HQC61ipheU0fOtPG2H6gbmnAtg_Exxa-js6YiH9vexYUZTDsNTRVvXR9MT_6SnVnTerr60QV7Xy3fiqdk87J-Lh43ieFCDAnf5bXQaiezWgCQpSzjQqHRWW6okpy0RqtMntUSc5BckJUckae5hQoETxfsZs49uP5rJD-U-350XagsA6dBoj5CdzNUud57R7Y8uObTuKlEKI_DlL_DBPZ2Zk3l_7L-c99cT1-M</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Bauer, S. H</creator><general>Division of Chemical Education</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LIQON</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19990301</creationdate><title>General Potential Energy Surfaces for Catalytic Processes</title><author>Bauer, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-2b7d498b56d400efe662481a967aec52e991f8a76d5170524ef5211237f0c0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Metal clusters</topic><topic>Potential energy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, S. H</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Potential Energy Surfaces for Catalytic Processes</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>76</volume><issue>3</issue><spage>440</spage><pages>440-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed076p440</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 1999-03, Vol.76 (3), p.440 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_211905192 |
source | ACS Publications |
subjects | Catalysis Catalysts Chemical reactions Chemistry Metal clusters Potential energy Substrates |
title | General Potential Energy Surfaces for Catalytic Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Potential%20Energy%20Surfaces%20for%20Catalytic%20Processes&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Bauer,%20S.%20H&rft.date=1999-03-01&rft.volume=76&rft.issue=3&rft.spage=440&rft.pages=440-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed076p440&rft_dat=%3Cproquest_cross%3E39356230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211905192&rft_id=info:pmid/&rfr_iscdi=true |