General Potential Energy Surfaces for Catalytic Processes

Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 1999-03, Vol.76 (3), p.440
1. Verfasser: Bauer, S. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 440
container_title Journal of chemical education
container_volume 76
creator Bauer, S. H
description Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.
doi_str_mv 10.1021/ed076p440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_211905192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39356230</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-2b7d498b56d400efe662481a967aec52e991f8a76d5170524ef5211237f0c0423</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMoWFcP_oMiePBQnUmTNjlK2V2FBRfUc8m2E-lS2zVpD_33ZqnowdMb3ny8B4-xa4R7BI4PVEOeHYSAExahTlWCKVenLILwTLRU4pxdeL8HQC61ipheU0fOtPG2H6gbmnAtg_Exxa-js6YiH9vexYUZTDsNTRVvXR9MT_6SnVnTerr60QV7Xy3fiqdk87J-Lh43ieFCDAnf5bXQaiezWgCQpSzjQqHRWW6okpy0RqtMntUSc5BckJUckae5hQoETxfsZs49uP5rJD-U-350XagsA6dBoj5CdzNUud57R7Y8uObTuKlEKI_DlL_DBPZ2Zk3l_7L-c99cT1-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211905192</pqid></control><display><type>article</type><title>General Potential Energy Surfaces for Catalytic Processes</title><source>ACS Publications</source><creator>Bauer, S. H</creator><creatorcontrib>Bauer, S. H</creatorcontrib><description>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed076p440</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: Division of Chemical Education</publisher><subject>Catalysis ; Catalysts ; Chemical reactions ; Chemistry ; Metal clusters ; Potential energy ; Substrates</subject><ispartof>Journal of chemical education, 1999-03, Vol.76 (3), p.440</ispartof><rights>Copyright American Chemical Society Mar 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed076p440$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed076p440$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Bauer, S. H</creatorcontrib><title>General Potential Energy Surfaces for Catalytic Processes</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Metal clusters</subject><subject>Potential energy</subject><subject>Substrates</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEFLxDAQhYMoWFcP_oMiePBQnUmTNjlK2V2FBRfUc8m2E-lS2zVpD_33ZqnowdMb3ny8B4-xa4R7BI4PVEOeHYSAExahTlWCKVenLILwTLRU4pxdeL8HQC61ipheU0fOtPG2H6gbmnAtg_Exxa-js6YiH9vexYUZTDsNTRVvXR9MT_6SnVnTerr60QV7Xy3fiqdk87J-Lh43ieFCDAnf5bXQaiezWgCQpSzjQqHRWW6okpy0RqtMntUSc5BckJUckae5hQoETxfsZs49uP5rJD-U-350XagsA6dBoj5CdzNUud57R7Y8uObTuKlEKI_DlL_DBPZ2Zk3l_7L-c99cT1-M</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Bauer, S. H</creator><general>Division of Chemical Education</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LIQON</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19990301</creationdate><title>General Potential Energy Surfaces for Catalytic Processes</title><author>Bauer, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-2b7d498b56d400efe662481a967aec52e991f8a76d5170524ef5211237f0c0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Metal clusters</topic><topic>Potential energy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, S. H</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Potential Energy Surfaces for Catalytic Processes</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>76</volume><issue>3</issue><spage>440</spage><pages>440-</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>Here we argue that one may describe, in general terms, how catalysts modify reaction mechanisms by entering and leaving a conversion sequence, using potential energy surfaces that are conceptually correct. Thermochemical and kinetic constraints providing bounds that limit catalytic processes are formulated. 3-D diagrams are proposed. These clearly illustrate the basic principle that catalysts initially associate with the substrates and thus directly participate in modified conversion pathways, but are regenerated in the final step, thereby providing for a turnover number greater than unity.</abstract><cop>Easton</cop><pub>Division of Chemical Education</pub><doi>10.1021/ed076p440</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 1999-03, Vol.76 (3), p.440
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_211905192
source ACS Publications
subjects Catalysis
Catalysts
Chemical reactions
Chemistry
Metal clusters
Potential energy
Substrates
title General Potential Energy Surfaces for Catalytic Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Potential%20Energy%20Surfaces%20for%20Catalytic%20Processes&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Bauer,%20S.%20H&rft.date=1999-03-01&rft.volume=76&rft.issue=3&rft.spage=440&rft.pages=440-&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed076p440&rft_dat=%3Cproquest_cross%3E39356230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211905192&rft_id=info:pmid/&rfr_iscdi=true