Dynamic model based formation control and obstacle avoidance of multi-robot systems

This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2008-05, Vol.26 (3), p.345-356
Hauptverfasser: De La Cruz, Celso, Carelli, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 345
container_title Robotica
container_volume 26
creator De La Cruz, Celso
Carelli, Ricardo
description This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.
doi_str_mv 10.1017/S0263574707004092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_211888083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574707004092</cupid><sourcerecordid>1497329681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-478c0e6c72fde7abf9bf9b0dc313eb94eaa554882095675acdba2e1a7ee5debd3</originalsourceid><addsrcrecordid>eNp1UNFKwzAUDaLgnH6Ab8H3atK0SfooU6cwEZ3C3sJtciudbaNJJ-7v7djQBxEu3Idzzj3nHkJOOTvnjKuLOUulyFWmmGIsY0W6R0Y8k0WipdT7ZLSBkw1-SI5iXDLGBc_UiMyv1h20taWtd9jQEiI6WvnQQl_7jlrf9cE3FDpHfRl7sA1S-PS1g84i9RVtV01fJ8GXvqdxHXts4zE5qKCJeLLbY_Jyc_08uU1mD9O7yeUssSLP-iRT2jKUVqWVQwVlVWyGOSu4wLLIECDPM61TVuRS5WBdCSlyUIi5w9KJMTnb3n0P_mOFsTdLvwrdYGlSzrXWTIuBxLckG3yMASvzHuoWwtpwZjbVmT_VDZpkq6mHf75-BBDejFRC5UZOHw27l-nTomBmMfDFzgPaMtTuFX-T_O_yDdiCgPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211888083</pqid></control><display><type>article</type><title>Dynamic model based formation control and obstacle avoidance of multi-robot systems</title><source>Cambridge Journals</source><creator>De La Cruz, Celso ; Carelli, Ricardo</creator><creatorcontrib>De La Cruz, Celso ; Carelli, Ricardo</creatorcontrib><description>This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574707004092</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamic model ; Formation control ; Non-holonomic mobile robots ; Nonlinear systems</subject><ispartof>Robotica, 2008-05, Vol.26 (3), p.345-356</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-478c0e6c72fde7abf9bf9b0dc313eb94eaa554882095675acdba2e1a7ee5debd3</citedby><cites>FETCH-LOGICAL-c354t-478c0e6c72fde7abf9bf9b0dc313eb94eaa554882095675acdba2e1a7ee5debd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574707004092/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>De La Cruz, Celso</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><title>Dynamic model based formation control and obstacle avoidance of multi-robot systems</title><title>Robotica</title><addtitle>Robotica</addtitle><description>This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.</description><subject>Dynamic model</subject><subject>Formation control</subject><subject>Non-holonomic mobile robots</subject><subject>Nonlinear systems</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UNFKwzAUDaLgnH6Ab8H3atK0SfooU6cwEZ3C3sJtciudbaNJJ-7v7djQBxEu3Idzzj3nHkJOOTvnjKuLOUulyFWmmGIsY0W6R0Y8k0WipdT7ZLSBkw1-SI5iXDLGBc_UiMyv1h20taWtd9jQEiI6WvnQQl_7jlrf9cE3FDpHfRl7sA1S-PS1g84i9RVtV01fJ8GXvqdxHXts4zE5qKCJeLLbY_Jyc_08uU1mD9O7yeUssSLP-iRT2jKUVqWVQwVlVWyGOSu4wLLIECDPM61TVuRS5WBdCSlyUIi5w9KJMTnb3n0P_mOFsTdLvwrdYGlSzrXWTIuBxLckG3yMASvzHuoWwtpwZjbVmT_VDZpkq6mHf75-BBDejFRC5UZOHw27l-nTomBmMfDFzgPaMtTuFX-T_O_yDdiCgPY</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>De La Cruz, Celso</creator><creator>Carelli, Ricardo</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>Dynamic model based formation control and obstacle avoidance of multi-robot systems</title><author>De La Cruz, Celso ; Carelli, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-478c0e6c72fde7abf9bf9b0dc313eb94eaa554882095675acdba2e1a7ee5debd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Dynamic model</topic><topic>Formation control</topic><topic>Non-holonomic mobile robots</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De La Cruz, Celso</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De La Cruz, Celso</au><au>Carelli, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic model based formation control and obstacle avoidance of multi-robot systems</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>26</volume><issue>3</issue><spage>345</spage><epage>356</epage><pages>345-356</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574707004092</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2008-05, Vol.26 (3), p.345-356
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_journals_211888083
source Cambridge Journals
subjects Dynamic model
Formation control
Non-holonomic mobile robots
Nonlinear systems
title Dynamic model based formation control and obstacle avoidance of multi-robot systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20model%20based%20formation%20control%20and%20obstacle%20avoidance%20of%20multi-robot%20systems&rft.jtitle=Robotica&rft.au=De%20La%20Cruz,%20Celso&rft.date=2008-05-01&rft.volume=26&rft.issue=3&rft.spage=345&rft.epage=356&rft.pages=345-356&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574707004092&rft_dat=%3Cproquest_cross%3E1497329681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211888083&rft_id=info:pmid/&rft_cupid=10_1017_S0263574707004092&rfr_iscdi=true