Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems

Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-10, Vol.94 (14), p.144434
Hauptverfasser: Kong, Tai, Meier, William R, Lin, Qisheng, Saunders, Scott M, Bud'ko, Sergey L, Flint, Rebecca, Canfield, Paul C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 144434
container_title Physical review. B
container_volume 94
creator Kong, Tai
Meier, William R
Lin, Qisheng
Saunders, Scott M
Bud'ko, Sergey L
Flint, Rebecca
Canfield, Paul C
description Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.
doi_str_mv 10.1103/PhysRevB.94.144434
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118788306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118788306</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-a9aa8de7fb2d8bc4e894d965bfbffd548ad1620c50c6e8ab7c4a282940db92883</originalsourceid><addsrcrecordid>eNo9j81KxDAUhYMoOIzzAq4CbhSmNUnTNlm40KqjMP4w6GJWQ5rc_gydtjYdsW_gTvARfRIjiqtz4Z5zv3MROqTEp5QEp4_FYBfweuFL7lPOecB30IjxSHpSRnL3fw7JPppYuyaE0IjImMgR-vgJl1pVuO2aFrq-BIubDNuyzivAuhtsr6qqrAEv7nKWbCU-Xpwtpwl8vX_em-nMOL0cpsv0BKva4L4AbEF1usBZ0-Gy9tpKufBG5TX0pXam0ja9Yw1uiQt4U3lTO7x1INjYA7SXqcrC5E_H6Pn66im58eYPs9vkfO61lAa9p6RSwkCcpcyIVHMQkhsZhWmWZpkJuVCGRozokOgIhEpjzRUTTHJiUsmECMbo6Peue_tlC7ZfrZtt54rYFaNUxM5CouAbz9xsXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118788306</pqid></control><display><type>article</type><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><source>American Physical Society Journals</source><creator>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</creator><creatorcontrib>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</creatorcontrib><description>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.144434</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Angular momentum ; Anisotropy ; Antiferromagnetism ; Bearing ; Crystals ; Dysprosium ; Gadolinium ; Magnetic anisotropy ; Magnetic transitions ; Magnetization ; Phase transitions ; Physical properties ; Single crystals ; Specific heat ; Temperature ; Temperature dependence ; X-ray diffraction ; Ytterbium</subject><ispartof>Physical review. B, 2016-10, Vol.94 (14), p.144434</ispartof><rights>Copyright American Physical Society Oct 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Tai</creatorcontrib><creatorcontrib>Meier, William R</creatorcontrib><creatorcontrib>Lin, Qisheng</creatorcontrib><creatorcontrib>Saunders, Scott M</creatorcontrib><creatorcontrib>Bud'ko, Sergey L</creatorcontrib><creatorcontrib>Flint, Rebecca</creatorcontrib><creatorcontrib>Canfield, Paul C</creatorcontrib><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><title>Physical review. B</title><description>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</description><subject>Angular momentum</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Bearing</subject><subject>Crystals</subject><subject>Dysprosium</subject><subject>Gadolinium</subject><subject>Magnetic anisotropy</subject><subject>Magnetic transitions</subject><subject>Magnetization</subject><subject>Phase transitions</subject><subject>Physical properties</subject><subject>Single crystals</subject><subject>Specific heat</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><subject>Ytterbium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j81KxDAUhYMoOIzzAq4CbhSmNUnTNlm40KqjMP4w6GJWQ5rc_gydtjYdsW_gTvARfRIjiqtz4Z5zv3MROqTEp5QEp4_FYBfweuFL7lPOecB30IjxSHpSRnL3fw7JPppYuyaE0IjImMgR-vgJl1pVuO2aFrq-BIubDNuyzivAuhtsr6qqrAEv7nKWbCU-Xpwtpwl8vX_em-nMOL0cpsv0BKva4L4AbEF1usBZ0-Gy9tpKufBG5TX0pXam0ja9Yw1uiQt4U3lTO7x1INjYA7SXqcrC5E_H6Pn66im58eYPs9vkfO61lAa9p6RSwkCcpcyIVHMQkhsZhWmWZpkJuVCGRozokOgIhEpjzRUTTHJiUsmECMbo6Peue_tlC7ZfrZtt54rYFaNUxM5CouAbz9xsXA</recordid><startdate>20161024</startdate><enddate>20161024</enddate><creator>Kong, Tai</creator><creator>Meier, William R</creator><creator>Lin, Qisheng</creator><creator>Saunders, Scott M</creator><creator>Bud'ko, Sergey L</creator><creator>Flint, Rebecca</creator><creator>Canfield, Paul C</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161024</creationdate><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><author>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-a9aa8de7fb2d8bc4e894d965bfbffd548ad1620c50c6e8ab7c4a282940db92883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angular momentum</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Bearing</topic><topic>Crystals</topic><topic>Dysprosium</topic><topic>Gadolinium</topic><topic>Magnetic anisotropy</topic><topic>Magnetic transitions</topic><topic>Magnetization</topic><topic>Phase transitions</topic><topic>Physical properties</topic><topic>Single crystals</topic><topic>Specific heat</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Tai</creatorcontrib><creatorcontrib>Meier, William R</creatorcontrib><creatorcontrib>Lin, Qisheng</creatorcontrib><creatorcontrib>Saunders, Scott M</creatorcontrib><creatorcontrib>Bud'ko, Sergey L</creatorcontrib><creatorcontrib>Flint, Rebecca</creatorcontrib><creatorcontrib>Canfield, Paul C</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Tai</au><au>Meier, William R</au><au>Lin, Qisheng</au><au>Saunders, Scott M</au><au>Bud'ko, Sergey L</au><au>Flint, Rebecca</au><au>Canfield, Paul C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</atitle><jtitle>Physical review. B</jtitle><date>2016-10-24</date><risdate>2016</risdate><volume>94</volume><issue>14</issue><spage>144434</spage><pages>144434-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.94.144434</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-10, Vol.94 (14), p.144434
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2118788306
source American Physical Society Journals
subjects Angular momentum
Anisotropy
Antiferromagnetism
Bearing
Crystals
Dysprosium
Gadolinium
Magnetic anisotropy
Magnetic transitions
Magnetization
Phase transitions
Physical properties
Single crystals
Specific heat
Temperature
Temperature dependence
X-ray diffraction
Ytterbium
title Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20properties%20of%20single%20crystalline%20RMg2Cu9%20(R=Y,Ce%E2%88%92Nd,Gd%E2%88%92Dy,Yb)%20and%20the%20search%20for%20in-plane%20magnetic%20anisotropy%20in%20hexagonal%20systems&rft.jtitle=Physical%20review.%20B&rft.au=Kong,%20Tai&rft.date=2016-10-24&rft.volume=94&rft.issue=14&rft.spage=144434&rft.pages=144434-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.144434&rft_dat=%3Cproquest%3E2118788306%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118788306&rft_id=info:pmid/&rfr_iscdi=true