Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems
Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magneti...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-10, Vol.94 (14), p.144434 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 144434 |
container_title | Physical review. B |
container_volume | 94 |
creator | Kong, Tai Meier, William R Lin, Qisheng Saunders, Scott M Bud'ko, Sergey L Flint, Rebecca Canfield, Paul C |
description | Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy. |
doi_str_mv | 10.1103/PhysRevB.94.144434 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118788306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118788306</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-a9aa8de7fb2d8bc4e894d965bfbffd548ad1620c50c6e8ab7c4a282940db92883</originalsourceid><addsrcrecordid>eNo9j81KxDAUhYMoOIzzAq4CbhSmNUnTNlm40KqjMP4w6GJWQ5rc_gydtjYdsW_gTvARfRIjiqtz4Z5zv3MROqTEp5QEp4_FYBfweuFL7lPOecB30IjxSHpSRnL3fw7JPppYuyaE0IjImMgR-vgJl1pVuO2aFrq-BIubDNuyzivAuhtsr6qqrAEv7nKWbCU-Xpwtpwl8vX_em-nMOL0cpsv0BKva4L4AbEF1usBZ0-Gy9tpKufBG5TX0pXam0ja9Yw1uiQt4U3lTO7x1INjYA7SXqcrC5E_H6Pn66im58eYPs9vkfO61lAa9p6RSwkCcpcyIVHMQkhsZhWmWZpkJuVCGRozokOgIhEpjzRUTTHJiUsmECMbo6Peue_tlC7ZfrZtt54rYFaNUxM5CouAbz9xsXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118788306</pqid></control><display><type>article</type><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><source>American Physical Society Journals</source><creator>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</creator><creatorcontrib>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</creatorcontrib><description>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.144434</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Angular momentum ; Anisotropy ; Antiferromagnetism ; Bearing ; Crystals ; Dysprosium ; Gadolinium ; Magnetic anisotropy ; Magnetic transitions ; Magnetization ; Phase transitions ; Physical properties ; Single crystals ; Specific heat ; Temperature ; Temperature dependence ; X-ray diffraction ; Ytterbium</subject><ispartof>Physical review. B, 2016-10, Vol.94 (14), p.144434</ispartof><rights>Copyright American Physical Society Oct 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Tai</creatorcontrib><creatorcontrib>Meier, William R</creatorcontrib><creatorcontrib>Lin, Qisheng</creatorcontrib><creatorcontrib>Saunders, Scott M</creatorcontrib><creatorcontrib>Bud'ko, Sergey L</creatorcontrib><creatorcontrib>Flint, Rebecca</creatorcontrib><creatorcontrib>Canfield, Paul C</creatorcontrib><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><title>Physical review. B</title><description>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</description><subject>Angular momentum</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Bearing</subject><subject>Crystals</subject><subject>Dysprosium</subject><subject>Gadolinium</subject><subject>Magnetic anisotropy</subject><subject>Magnetic transitions</subject><subject>Magnetization</subject><subject>Phase transitions</subject><subject>Physical properties</subject><subject>Single crystals</subject><subject>Specific heat</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><subject>Ytterbium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j81KxDAUhYMoOIzzAq4CbhSmNUnTNlm40KqjMP4w6GJWQ5rc_gydtjYdsW_gTvARfRIjiqtz4Z5zv3MROqTEp5QEp4_FYBfweuFL7lPOecB30IjxSHpSRnL3fw7JPppYuyaE0IjImMgR-vgJl1pVuO2aFrq-BIubDNuyzivAuhtsr6qqrAEv7nKWbCU-Xpwtpwl8vX_em-nMOL0cpsv0BKva4L4AbEF1usBZ0-Gy9tpKufBG5TX0pXam0ja9Yw1uiQt4U3lTO7x1INjYA7SXqcrC5E_H6Pn66im58eYPs9vkfO61lAa9p6RSwkCcpcyIVHMQkhsZhWmWZpkJuVCGRozokOgIhEpjzRUTTHJiUsmECMbo6Peue_tlC7ZfrZtt54rYFaNUxM5CouAbz9xsXA</recordid><startdate>20161024</startdate><enddate>20161024</enddate><creator>Kong, Tai</creator><creator>Meier, William R</creator><creator>Lin, Qisheng</creator><creator>Saunders, Scott M</creator><creator>Bud'ko, Sergey L</creator><creator>Flint, Rebecca</creator><creator>Canfield, Paul C</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161024</creationdate><title>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</title><author>Kong, Tai ; Meier, William R ; Lin, Qisheng ; Saunders, Scott M ; Bud'ko, Sergey L ; Flint, Rebecca ; Canfield, Paul C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-a9aa8de7fb2d8bc4e894d965bfbffd548ad1620c50c6e8ab7c4a282940db92883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angular momentum</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Bearing</topic><topic>Crystals</topic><topic>Dysprosium</topic><topic>Gadolinium</topic><topic>Magnetic anisotropy</topic><topic>Magnetic transitions</topic><topic>Magnetization</topic><topic>Phase transitions</topic><topic>Physical properties</topic><topic>Single crystals</topic><topic>Specific heat</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Tai</creatorcontrib><creatorcontrib>Meier, William R</creatorcontrib><creatorcontrib>Lin, Qisheng</creatorcontrib><creatorcontrib>Saunders, Scott M</creatorcontrib><creatorcontrib>Bud'ko, Sergey L</creatorcontrib><creatorcontrib>Flint, Rebecca</creatorcontrib><creatorcontrib>Canfield, Paul C</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Tai</au><au>Meier, William R</au><au>Lin, Qisheng</au><au>Saunders, Scott M</au><au>Bud'ko, Sergey L</au><au>Flint, Rebecca</au><au>Canfield, Paul C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems</atitle><jtitle>Physical review. B</jtitle><date>2016-10-24</date><risdate>2016</risdate><volume>94</volume><issue>14</issue><spage>144434</spage><pages>144434-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ∼15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9 and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.94.144434</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-10, Vol.94 (14), p.144434 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2118788306 |
source | American Physical Society Journals |
subjects | Angular momentum Anisotropy Antiferromagnetism Bearing Crystals Dysprosium Gadolinium Magnetic anisotropy Magnetic transitions Magnetization Phase transitions Physical properties Single crystals Specific heat Temperature Temperature dependence X-ray diffraction Ytterbium |
title | Physical properties of single crystalline RMg2Cu9 (R=Y,Ce−Nd,Gd−Dy,Yb) and the search for in-plane magnetic anisotropy in hexagonal systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20properties%20of%20single%20crystalline%20RMg2Cu9%20(R=Y,Ce%E2%88%92Nd,Gd%E2%88%92Dy,Yb)%20and%20the%20search%20for%20in-plane%20magnetic%20anisotropy%20in%20hexagonal%20systems&rft.jtitle=Physical%20review.%20B&rft.au=Kong,%20Tai&rft.date=2016-10-24&rft.volume=94&rft.issue=14&rft.spage=144434&rft.pages=144434-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.144434&rft_dat=%3Cproquest%3E2118788306%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118788306&rft_id=info:pmid/&rfr_iscdi=true |