Design optimisation of separate-jet exhausts for the next generation of civil aero-engines
The next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a...
Gespeichert in:
Veröffentlicht in: | Aeronautical journal 2018-10, Vol.122 (1256), p.1586-1605 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1605 |
---|---|
container_issue | 1256 |
container_start_page | 1586 |
container_title | Aeronautical journal |
container_volume | 122 |
creator | Goulos, I. Otter, J. Stankowski, T. Macmanus, D. Grech, N. Sheaf, C. |
description | The next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a key role in the success of future turbofans. This paper presents the development of a computational framework for the aerodynamic design of separate-jet exhaust systems for civil aero-engines. A mathematical approach is synthesised based on class-shape transformation (CST) functions for the parametric geometry definition of gas-turbine exhaust components such as annular ducts and nozzles. This geometry formulation is coupled with an automated viscous and compressible flow solution method and a cost-effective design space exploration (DSE) approach. The framework is deployed to optimise the performance of a separate-jet exhaust for very-high-bypass ratio (VHBR) turbofan engine. The optimisations carried out suggest the potential to increase the engine’s net propulsive force compared with a baseline architecture, through optimum exhaust re-design. The proposed method is able to identify and alleviate adverse flow-features that may deteriorate the aerodynamic behaviour of the exhaust system. |
doi_str_mv | 10.1017/aer.2018.95 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118758630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_aer_2018_95</cupid><sourcerecordid>2118758630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c887c146058e701b4dae10d2a65f41e81b689976bc0ba7dae5f9c20e4abcba273</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKsn_0DAo6ROstls9ijVqlDwohcvIZvOblPa3TVJpf57t7ToxdMwzPfePB4h1xwmHHhxZzFMBHA9KfMTMhKQl0xJJU_JCAA4K4WEc3IR4wogAyHliHw8YPRNS7s--Y2PNvluWGoasbfBJmQrTBR3S7uNKdK6CzQtkba4S7TBFsOvwPkvv6ZDgI5h2_gW4yU5q-064tVxjsn77PFt-szmr08v0_s5c1mmEnNaF45LBbnGAnglFxY5LIRVeS05al4pXZaFqhxUthiOeV06ASht5SorimxMbg6-feg-txiTWXXb0A4vjeBcF7lWGQzU7YFyoYsxYG364Dc2fBsOZl-eGbKbfXmmzAeaHWm7qYJfNPhn-h__A8JTcj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118758630</pqid></control><display><type>article</type><title>Design optimisation of separate-jet exhausts for the next generation of civil aero-engines</title><source>Cambridge University Press Journals Complete</source><creator>Goulos, I. ; Otter, J. ; Stankowski, T. ; Macmanus, D. ; Grech, N. ; Sheaf, C.</creator><creatorcontrib>Goulos, I. ; Otter, J. ; Stankowski, T. ; Macmanus, D. ; Grech, N. ; Sheaf, C.</creatorcontrib><description>The next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a key role in the success of future turbofans. This paper presents the development of a computational framework for the aerodynamic design of separate-jet exhaust systems for civil aero-engines. A mathematical approach is synthesised based on class-shape transformation (CST) functions for the parametric geometry definition of gas-turbine exhaust components such as annular ducts and nozzles. This geometry formulation is coupled with an automated viscous and compressible flow solution method and a cost-effective design space exploration (DSE) approach. The framework is deployed to optimise the performance of a separate-jet exhaust for very-high-bypass ratio (VHBR) turbofan engine. The optimisations carried out suggest the potential to increase the engine’s net propulsive force compared with a baseline architecture, through optimum exhaust re-design. The proposed method is able to identify and alleviate adverse flow-features that may deteriorate the aerodynamic behaviour of the exhaust system.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/aer.2018.95</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamics ; Aerospace engines ; Aircraft ; Annular ducts ; Bypass ratio ; Compressible flow ; Design of experiments ; Design optimization ; Ducts ; Engines ; Exhaust gases ; Exhaust systems ; Fluid dynamics ; Gas turbine engines ; Genetic algorithms ; Jet exhaust ; Nozzles ; Turbofan engines ; Turbulence models</subject><ispartof>Aeronautical journal, 2018-10, Vol.122 (1256), p.1586-1605</ispartof><rights>Rolls-Royce plc. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c887c146058e701b4dae10d2a65f41e81b689976bc0ba7dae5f9c20e4abcba273</citedby><cites>FETCH-LOGICAL-c336t-c887c146058e701b4dae10d2a65f41e81b689976bc0ba7dae5f9c20e4abcba273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001924018000957/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Goulos, I.</creatorcontrib><creatorcontrib>Otter, J.</creatorcontrib><creatorcontrib>Stankowski, T.</creatorcontrib><creatorcontrib>Macmanus, D.</creatorcontrib><creatorcontrib>Grech, N.</creatorcontrib><creatorcontrib>Sheaf, C.</creatorcontrib><title>Design optimisation of separate-jet exhausts for the next generation of civil aero-engines</title><title>Aeronautical journal</title><addtitle>Aeronaut. j</addtitle><description>The next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a key role in the success of future turbofans. This paper presents the development of a computational framework for the aerodynamic design of separate-jet exhaust systems for civil aero-engines. A mathematical approach is synthesised based on class-shape transformation (CST) functions for the parametric geometry definition of gas-turbine exhaust components such as annular ducts and nozzles. This geometry formulation is coupled with an automated viscous and compressible flow solution method and a cost-effective design space exploration (DSE) approach. The framework is deployed to optimise the performance of a separate-jet exhaust for very-high-bypass ratio (VHBR) turbofan engine. The optimisations carried out suggest the potential to increase the engine’s net propulsive force compared with a baseline architecture, through optimum exhaust re-design. The proposed method is able to identify and alleviate adverse flow-features that may deteriorate the aerodynamic behaviour of the exhaust system.</description><subject>Aerodynamics</subject><subject>Aerospace engines</subject><subject>Aircraft</subject><subject>Annular ducts</subject><subject>Bypass ratio</subject><subject>Compressible flow</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Ducts</subject><subject>Engines</subject><subject>Exhaust gases</subject><subject>Exhaust systems</subject><subject>Fluid dynamics</subject><subject>Gas turbine engines</subject><subject>Genetic algorithms</subject><subject>Jet exhaust</subject><subject>Nozzles</subject><subject>Turbofan engines</subject><subject>Turbulence models</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFLAzEQhYMoWKsn_0DAo6ROstls9ijVqlDwohcvIZvOblPa3TVJpf57t7ToxdMwzPfePB4h1xwmHHhxZzFMBHA9KfMTMhKQl0xJJU_JCAA4K4WEc3IR4wogAyHliHw8YPRNS7s--Y2PNvluWGoasbfBJmQrTBR3S7uNKdK6CzQtkba4S7TBFsOvwPkvv6ZDgI5h2_gW4yU5q-064tVxjsn77PFt-szmr08v0_s5c1mmEnNaF45LBbnGAnglFxY5LIRVeS05al4pXZaFqhxUthiOeV06ASht5SorimxMbg6-feg-txiTWXXb0A4vjeBcF7lWGQzU7YFyoYsxYG364Dc2fBsOZl-eGbKbfXmmzAeaHWm7qYJfNPhn-h__A8JTcj0</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Goulos, I.</creator><creator>Otter, J.</creator><creator>Stankowski, T.</creator><creator>Macmanus, D.</creator><creator>Grech, N.</creator><creator>Sheaf, C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201810</creationdate><title>Design optimisation of separate-jet exhausts for the next generation of civil aero-engines</title><author>Goulos, I. ; Otter, J. ; Stankowski, T. ; Macmanus, D. ; Grech, N. ; Sheaf, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c887c146058e701b4dae10d2a65f41e81b689976bc0ba7dae5f9c20e4abcba273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Aerospace engines</topic><topic>Aircraft</topic><topic>Annular ducts</topic><topic>Bypass ratio</topic><topic>Compressible flow</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Ducts</topic><topic>Engines</topic><topic>Exhaust gases</topic><topic>Exhaust systems</topic><topic>Fluid dynamics</topic><topic>Gas turbine engines</topic><topic>Genetic algorithms</topic><topic>Jet exhaust</topic><topic>Nozzles</topic><topic>Turbofan engines</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulos, I.</creatorcontrib><creatorcontrib>Otter, J.</creatorcontrib><creatorcontrib>Stankowski, T.</creatorcontrib><creatorcontrib>Macmanus, D.</creatorcontrib><creatorcontrib>Grech, N.</creatorcontrib><creatorcontrib>Sheaf, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulos, I.</au><au>Otter, J.</au><au>Stankowski, T.</au><au>Macmanus, D.</au><au>Grech, N.</au><au>Sheaf, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimisation of separate-jet exhausts for the next generation of civil aero-engines</atitle><jtitle>Aeronautical journal</jtitle><addtitle>Aeronaut. j</addtitle><date>2018-10</date><risdate>2018</risdate><volume>122</volume><issue>1256</issue><spage>1586</spage><epage>1605</epage><pages>1586-1605</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><abstract>The next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a key role in the success of future turbofans. This paper presents the development of a computational framework for the aerodynamic design of separate-jet exhaust systems for civil aero-engines. A mathematical approach is synthesised based on class-shape transformation (CST) functions for the parametric geometry definition of gas-turbine exhaust components such as annular ducts and nozzles. This geometry formulation is coupled with an automated viscous and compressible flow solution method and a cost-effective design space exploration (DSE) approach. The framework is deployed to optimise the performance of a separate-jet exhaust for very-high-bypass ratio (VHBR) turbofan engine. The optimisations carried out suggest the potential to increase the engine’s net propulsive force compared with a baseline architecture, through optimum exhaust re-design. The proposed method is able to identify and alleviate adverse flow-features that may deteriorate the aerodynamic behaviour of the exhaust system.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/aer.2018.95</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9240 |
ispartof | Aeronautical journal, 2018-10, Vol.122 (1256), p.1586-1605 |
issn | 0001-9240 2059-6464 |
language | eng |
recordid | cdi_proquest_journals_2118758630 |
source | Cambridge University Press Journals Complete |
subjects | Aerodynamics Aerospace engines Aircraft Annular ducts Bypass ratio Compressible flow Design of experiments Design optimization Ducts Engines Exhaust gases Exhaust systems Fluid dynamics Gas turbine engines Genetic algorithms Jet exhaust Nozzles Turbofan engines Turbulence models |
title | Design optimisation of separate-jet exhausts for the next generation of civil aero-engines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimisation%20of%20separate-jet%20exhausts%20for%20the%20next%20generation%20of%20civil%20aero-engines&rft.jtitle=Aeronautical%20journal&rft.au=Goulos,%20I.&rft.date=2018-10&rft.volume=122&rft.issue=1256&rft.spage=1586&rft.epage=1605&rft.pages=1586-1605&rft.issn=0001-9240&rft.eissn=2059-6464&rft_id=info:doi/10.1017/aer.2018.95&rft_dat=%3Cproquest_cross%3E2118758630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118758630&rft_id=info:pmid/&rft_cupid=10_1017_aer_2018_95&rfr_iscdi=true |