A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas
Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2018-10, Vol.77 (20), p.1-15, Article 713 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 20 |
container_start_page | 1 |
container_title | Environmental earth sciences |
container_volume | 77 |
creator | Karan, Shivesh Kishore Samadder, Sukha Ranjan |
description | Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred. |
doi_str_mv | 10.1007/s12665-018-7893-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118717258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118717258</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouKz7A7wFPEeTZvPR47L4BQte9BymabJmaZOatAf_va0VPTmXGcL7PpN5i-KakltKiLzLtBSCY0IVlqpimJ8VK6qEwKKsqvPfWZHLYpPziUzFKKuIWBVph0zsekg-x4CiQ413ziYbBtRCaPCYLTIt5OydNzD4STRY8x78x2gzcjEhMGZMMFjUxeCHmHw4fnPsMUFjmwkPLe58mN8hWchXxYWDNtvNT18Xbw_3r_snfHh5fN7vDhgYqwZMLRVqq3hlKDBDSkKANUIRWZcE6qaUAmoqtxVvDFe2ls4yVze8roW0YBRl6-Jm4fYpzr8d9CmOKUwrdUmpklSWXE0quqhMijkn63SffAfpU1Oi53T1kq6e0tVzuppPnnLx5H4-16Y_8v-mL2-pfqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118717258</pqid></control><display><type>article</type><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><source>Springer Nature - Complete Springer Journals</source><creator>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</creator><creatorcontrib>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</creatorcontrib><description>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-018-7893-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Biogeosciences ; Classification ; Classifiers ; Coal ; Coal mines ; Coal mining ; Data ; Earth and Environmental Science ; Earth Sciences ; Environmental degradation ; Environmental monitoring ; Environmental Science and Engineering ; Geochemistry ; Geology ; Hydrology/Water Resources ; Indian spacecraft ; Land use ; Land use classification ; Monitoring ; Original Article ; Pixels ; Satellite data ; Satellites ; Spectral sensitivity ; Support vector machines ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2018-10, Vol.77 (20), p.1-15, Article 713</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Earth Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</citedby><cites>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</cites><orcidid>0000-0002-0037-7030 ; 0000-0002-0037-6759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-018-7893-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-018-7893-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Karan, Shivesh Kishore</creatorcontrib><creatorcontrib>Samadder, Sukha Ranjan</creatorcontrib><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biogeosciences</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Data</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental degradation</subject><subject>Environmental monitoring</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Indian spacecraft</subject><subject>Land use</subject><subject>Land use classification</subject><subject>Monitoring</subject><subject>Original Article</subject><subject>Pixels</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Spectral sensitivity</subject><subject>Support vector machines</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouKz7A7wFPEeTZvPR47L4BQte9BymabJmaZOatAf_va0VPTmXGcL7PpN5i-KakltKiLzLtBSCY0IVlqpimJ8VK6qEwKKsqvPfWZHLYpPziUzFKKuIWBVph0zsekg-x4CiQ413ziYbBtRCaPCYLTIt5OydNzD4STRY8x78x2gzcjEhMGZMMFjUxeCHmHw4fnPsMUFjmwkPLe58mN8hWchXxYWDNtvNT18Xbw_3r_snfHh5fN7vDhgYqwZMLRVqq3hlKDBDSkKANUIRWZcE6qaUAmoqtxVvDFe2ls4yVze8roW0YBRl6-Jm4fYpzr8d9CmOKUwrdUmpklSWXE0quqhMijkn63SffAfpU1Oi53T1kq6e0tVzuppPnnLx5H4-16Y_8v-mL2-pfqI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Karan, Shivesh Kishore</creator><creator>Samadder, Sukha Ranjan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0037-7030</orcidid><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid></search><sort><creationdate>20181001</creationdate><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><author>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biogeosciences</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Data</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental degradation</topic><topic>Environmental monitoring</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Indian spacecraft</topic><topic>Land use</topic><topic>Land use classification</topic><topic>Monitoring</topic><topic>Original Article</topic><topic>Pixels</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Spectral sensitivity</topic><topic>Support vector machines</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, Shivesh Kishore</creatorcontrib><creatorcontrib>Samadder, Sukha Ranjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karan, Shivesh Kishore</au><au>Samadder, Sukha Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>77</volume><issue>20</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>713</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-018-7893-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0037-7030</orcidid><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2018-10, Vol.77 (20), p.1-15, Article 713 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_2118717258 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Biogeosciences Classification Classifiers Coal Coal mines Coal mining Data Earth and Environmental Science Earth Sciences Environmental degradation Environmental monitoring Environmental Science and Engineering Geochemistry Geology Hydrology/Water Resources Indian spacecraft Land use Land use classification Monitoring Original Article Pixels Satellite data Satellites Spectral sensitivity Support vector machines Terrestrial Pollution |
title | A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20different%20land-use%20classification%20techniques%20for%20accurate%20monitoring%20of%20degraded%20coal-mining%20areas&rft.jtitle=Environmental%20earth%20sciences&rft.au=Karan,%20Shivesh%20Kishore&rft.date=2018-10-01&rft.volume=77&rft.issue=20&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=713&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-018-7893-5&rft_dat=%3Cproquest_cross%3E2118717258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118717258&rft_id=info:pmid/&rfr_iscdi=true |