A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas

Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2018-10, Vol.77 (20), p.1-15, Article 713
Hauptverfasser: Karan, Shivesh Kishore, Samadder, Sukha Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 20
container_start_page 1
container_title Environmental earth sciences
container_volume 77
creator Karan, Shivesh Kishore
Samadder, Sukha Ranjan
description Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.
doi_str_mv 10.1007/s12665-018-7893-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118717258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118717258</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouKz7A7wFPEeTZvPR47L4BQte9BymabJmaZOatAf_va0VPTmXGcL7PpN5i-KakltKiLzLtBSCY0IVlqpimJ8VK6qEwKKsqvPfWZHLYpPziUzFKKuIWBVph0zsekg-x4CiQ413ziYbBtRCaPCYLTIt5OydNzD4STRY8x78x2gzcjEhMGZMMFjUxeCHmHw4fnPsMUFjmwkPLe58mN8hWchXxYWDNtvNT18Xbw_3r_snfHh5fN7vDhgYqwZMLRVqq3hlKDBDSkKANUIRWZcE6qaUAmoqtxVvDFe2ls4yVze8roW0YBRl6-Jm4fYpzr8d9CmOKUwrdUmpklSWXE0quqhMijkn63SffAfpU1Oi53T1kq6e0tVzuppPnnLx5H4-16Y_8v-mL2-pfqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118717258</pqid></control><display><type>article</type><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><source>Springer Nature - Complete Springer Journals</source><creator>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</creator><creatorcontrib>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</creatorcontrib><description>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-018-7893-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Biogeosciences ; Classification ; Classifiers ; Coal ; Coal mines ; Coal mining ; Data ; Earth and Environmental Science ; Earth Sciences ; Environmental degradation ; Environmental monitoring ; Environmental Science and Engineering ; Geochemistry ; Geology ; Hydrology/Water Resources ; Indian spacecraft ; Land use ; Land use classification ; Monitoring ; Original Article ; Pixels ; Satellite data ; Satellites ; Spectral sensitivity ; Support vector machines ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2018-10, Vol.77 (20), p.1-15, Article 713</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Earth Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</citedby><cites>FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</cites><orcidid>0000-0002-0037-7030 ; 0000-0002-0037-6759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-018-7893-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-018-7893-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Karan, Shivesh Kishore</creatorcontrib><creatorcontrib>Samadder, Sukha Ranjan</creatorcontrib><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biogeosciences</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Data</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental degradation</subject><subject>Environmental monitoring</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Indian spacecraft</subject><subject>Land use</subject><subject>Land use classification</subject><subject>Monitoring</subject><subject>Original Article</subject><subject>Pixels</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Spectral sensitivity</subject><subject>Support vector machines</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouKz7A7wFPEeTZvPR47L4BQte9BymabJmaZOatAf_va0VPTmXGcL7PpN5i-KakltKiLzLtBSCY0IVlqpimJ8VK6qEwKKsqvPfWZHLYpPziUzFKKuIWBVph0zsekg-x4CiQ413ziYbBtRCaPCYLTIt5OydNzD4STRY8x78x2gzcjEhMGZMMFjUxeCHmHw4fnPsMUFjmwkPLe58mN8hWchXxYWDNtvNT18Xbw_3r_snfHh5fN7vDhgYqwZMLRVqq3hlKDBDSkKANUIRWZcE6qaUAmoqtxVvDFe2ls4yVze8roW0YBRl6-Jm4fYpzr8d9CmOKUwrdUmpklSWXE0quqhMijkn63SffAfpU1Oi53T1kq6e0tVzuppPnnLx5H4-16Y_8v-mL2-pfqI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Karan, Shivesh Kishore</creator><creator>Samadder, Sukha Ranjan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0037-7030</orcidid><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid></search><sort><creationdate>20181001</creationdate><title>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</title><author>Karan, Shivesh Kishore ; Samadder, Sukha Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-1e1684859c1a3c0200a3d6807b20abd276ab17495dc58eb7fe3fbd5bb67eac813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biogeosciences</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Data</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental degradation</topic><topic>Environmental monitoring</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Indian spacecraft</topic><topic>Land use</topic><topic>Land use classification</topic><topic>Monitoring</topic><topic>Original Article</topic><topic>Pixels</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Spectral sensitivity</topic><topic>Support vector machines</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, Shivesh Kishore</creatorcontrib><creatorcontrib>Samadder, Sukha Ranjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karan, Shivesh Kishore</au><au>Samadder, Sukha Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>77</volume><issue>20</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>713</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-018-7893-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0037-7030</orcidid><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2018-10, Vol.77 (20), p.1-15, Article 713
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2118717258
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Biogeosciences
Classification
Classifiers
Coal
Coal mines
Coal mining
Data
Earth and Environmental Science
Earth Sciences
Environmental degradation
Environmental monitoring
Environmental Science and Engineering
Geochemistry
Geology
Hydrology/Water Resources
Indian spacecraft
Land use
Land use classification
Monitoring
Original Article
Pixels
Satellite data
Satellites
Spectral sensitivity
Support vector machines
Terrestrial Pollution
title A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20different%20land-use%20classification%20techniques%20for%20accurate%20monitoring%20of%20degraded%20coal-mining%20areas&rft.jtitle=Environmental%20earth%20sciences&rft.au=Karan,%20Shivesh%20Kishore&rft.date=2018-10-01&rft.volume=77&rft.issue=20&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=713&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-018-7893-5&rft_dat=%3Cproquest_cross%3E2118717258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118717258&rft_id=info:pmid/&rfr_iscdi=true