Probing electronic wavefunctions by all-optical attosecond interferometry

Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-10
Hauptverfasser: Azoury, Doron, Kneller, Omer, Rozen, Shaked, Clergerie, Alex, Mairesse, Yann, Fabre, Baptiste, Pons, Bernard, Bruner, Barry D, Dudovich, Nirit, Krüger, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azoury, Doron
Kneller, Omer
Rozen, Shaked
Clergerie, Alex
Mairesse, Yann
Fabre, Baptiste
Pons, Bernard
Bruner, Barry D
Dudovich, Nirit
Krüger, Michael
description Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118631468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118631468</sourcerecordid><originalsourceid>FETCH-proquest_journals_21186314683</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC03S1u6i6ObgXtL4IikxryavSv9eBz_A6Q7nLlgmlRJFW0m5YnlKQ1mWstnJulYZO18i9i7cOXgwFDE4w9_6BXYKhhyGxPuZa-8LHMkZ7bkmwgQGw427QBAtRHwAxXnDllb7BPmva7Y9Hq77UzFGfE6QqBtwiuFLnRSibZSomlb9d30ALQE9ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118631468</pqid></control><display><type>article</type><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><source>Free E- Journals</source><creator>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</creator><creatorcontrib>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</creatorcontrib><description>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Argon ; Attosecond pulses ; Dipoles ; Electrons ; Helium ; Interferometry ; Ionization ; Light sources ; Mechanical properties ; Neon ; Orbital resonances (celestial mechanics) ; Phase retrieval ; Photoelectron spectroscopy ; Photoelectrons ; Quantum mechanics ; Scattering angle ; Spectrum analysis ; Wave functions</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Rozen, Shaked</creatorcontrib><creatorcontrib>Clergerie, Alex</creatorcontrib><creatorcontrib>Mairesse, Yann</creatorcontrib><creatorcontrib>Fabre, Baptiste</creatorcontrib><creatorcontrib>Pons, Bernard</creatorcontrib><creatorcontrib>Bruner, Barry D</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><title>arXiv.org</title><description>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</description><subject>Argon</subject><subject>Attosecond pulses</subject><subject>Dipoles</subject><subject>Electrons</subject><subject>Helium</subject><subject>Interferometry</subject><subject>Ionization</subject><subject>Light sources</subject><subject>Mechanical properties</subject><subject>Neon</subject><subject>Orbital resonances (celestial mechanics)</subject><subject>Phase retrieval</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Quantum mechanics</subject><subject>Scattering angle</subject><subject>Spectrum analysis</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC03S1u6i6ObgXtL4IikxryavSv9eBz_A6Q7nLlgmlRJFW0m5YnlKQ1mWstnJulYZO18i9i7cOXgwFDE4w9_6BXYKhhyGxPuZa-8LHMkZ7bkmwgQGw427QBAtRHwAxXnDllb7BPmva7Y9Hq77UzFGfE6QqBtwiuFLnRSibZSomlb9d30ALQE9ww</recordid><startdate>20181011</startdate><enddate>20181011</enddate><creator>Azoury, Doron</creator><creator>Kneller, Omer</creator><creator>Rozen, Shaked</creator><creator>Clergerie, Alex</creator><creator>Mairesse, Yann</creator><creator>Fabre, Baptiste</creator><creator>Pons, Bernard</creator><creator>Bruner, Barry D</creator><creator>Dudovich, Nirit</creator><creator>Krüger, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181011</creationdate><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><author>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21186314683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Argon</topic><topic>Attosecond pulses</topic><topic>Dipoles</topic><topic>Electrons</topic><topic>Helium</topic><topic>Interferometry</topic><topic>Ionization</topic><topic>Light sources</topic><topic>Mechanical properties</topic><topic>Neon</topic><topic>Orbital resonances (celestial mechanics)</topic><topic>Phase retrieval</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Quantum mechanics</topic><topic>Scattering angle</topic><topic>Spectrum analysis</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Rozen, Shaked</creatorcontrib><creatorcontrib>Clergerie, Alex</creatorcontrib><creatorcontrib>Mairesse, Yann</creatorcontrib><creatorcontrib>Fabre, Baptiste</creatorcontrib><creatorcontrib>Pons, Bernard</creatorcontrib><creatorcontrib>Bruner, Barry D</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azoury, Doron</au><au>Kneller, Omer</au><au>Rozen, Shaked</au><au>Clergerie, Alex</au><au>Mairesse, Yann</au><au>Fabre, Baptiste</au><au>Pons, Bernard</au><au>Bruner, Barry D</au><au>Dudovich, Nirit</au><au>Krüger, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Probing electronic wavefunctions by all-optical attosecond interferometry</atitle><jtitle>arXiv.org</jtitle><date>2018-10-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2118631468
source Free E- Journals
subjects Argon
Attosecond pulses
Dipoles
Electrons
Helium
Interferometry
Ionization
Light sources
Mechanical properties
Neon
Orbital resonances (celestial mechanics)
Phase retrieval
Photoelectron spectroscopy
Photoelectrons
Quantum mechanics
Scattering angle
Spectrum analysis
Wave functions
title Probing electronic wavefunctions by all-optical attosecond interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Probing%20electronic%20wavefunctions%20by%20all-optical%20attosecond%20interferometry&rft.jtitle=arXiv.org&rft.au=Azoury,%20Doron&rft.date=2018-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2118631468%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118631468&rft_id=info:pmid/&rfr_iscdi=true