Probing electronic wavefunctions by all-optical attosecond interferometry
Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. W...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Azoury, Doron Kneller, Omer Rozen, Shaked Clergerie, Alex Mairesse, Yann Fabre, Baptiste Pons, Bernard Bruner, Barry D Dudovich, Nirit Krüger, Michael |
description | Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118631468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118631468</sourcerecordid><originalsourceid>FETCH-proquest_journals_21186314683</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC03S1u6i6ObgXtL4IikxryavSv9eBz_A6Q7nLlgmlRJFW0m5YnlKQ1mWstnJulYZO18i9i7cOXgwFDE4w9_6BXYKhhyGxPuZa-8LHMkZ7bkmwgQGw427QBAtRHwAxXnDllb7BPmva7Y9Hq77UzFGfE6QqBtwiuFLnRSibZSomlb9d30ALQE9ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118631468</pqid></control><display><type>article</type><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><source>Free E- Journals</source><creator>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</creator><creatorcontrib>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</creatorcontrib><description>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Argon ; Attosecond pulses ; Dipoles ; Electrons ; Helium ; Interferometry ; Ionization ; Light sources ; Mechanical properties ; Neon ; Orbital resonances (celestial mechanics) ; Phase retrieval ; Photoelectron spectroscopy ; Photoelectrons ; Quantum mechanics ; Scattering angle ; Spectrum analysis ; Wave functions</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Rozen, Shaked</creatorcontrib><creatorcontrib>Clergerie, Alex</creatorcontrib><creatorcontrib>Mairesse, Yann</creatorcontrib><creatorcontrib>Fabre, Baptiste</creatorcontrib><creatorcontrib>Pons, Bernard</creatorcontrib><creatorcontrib>Bruner, Barry D</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><title>arXiv.org</title><description>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</description><subject>Argon</subject><subject>Attosecond pulses</subject><subject>Dipoles</subject><subject>Electrons</subject><subject>Helium</subject><subject>Interferometry</subject><subject>Ionization</subject><subject>Light sources</subject><subject>Mechanical properties</subject><subject>Neon</subject><subject>Orbital resonances (celestial mechanics)</subject><subject>Phase retrieval</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Quantum mechanics</subject><subject>Scattering angle</subject><subject>Spectrum analysis</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC03S1u6i6ObgXtL4IikxryavSv9eBz_A6Q7nLlgmlRJFW0m5YnlKQ1mWstnJulYZO18i9i7cOXgwFDE4w9_6BXYKhhyGxPuZa-8LHMkZ7bkmwgQGw427QBAtRHwAxXnDllb7BPmva7Y9Hq77UzFGfE6QqBtwiuFLnRSibZSomlb9d30ALQE9ww</recordid><startdate>20181011</startdate><enddate>20181011</enddate><creator>Azoury, Doron</creator><creator>Kneller, Omer</creator><creator>Rozen, Shaked</creator><creator>Clergerie, Alex</creator><creator>Mairesse, Yann</creator><creator>Fabre, Baptiste</creator><creator>Pons, Bernard</creator><creator>Bruner, Barry D</creator><creator>Dudovich, Nirit</creator><creator>Krüger, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181011</creationdate><title>Probing electronic wavefunctions by all-optical attosecond interferometry</title><author>Azoury, Doron ; Kneller, Omer ; Rozen, Shaked ; Clergerie, Alex ; Mairesse, Yann ; Fabre, Baptiste ; Pons, Bernard ; Bruner, Barry D ; Dudovich, Nirit ; Krüger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21186314683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Argon</topic><topic>Attosecond pulses</topic><topic>Dipoles</topic><topic>Electrons</topic><topic>Helium</topic><topic>Interferometry</topic><topic>Ionization</topic><topic>Light sources</topic><topic>Mechanical properties</topic><topic>Neon</topic><topic>Orbital resonances (celestial mechanics)</topic><topic>Phase retrieval</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Quantum mechanics</topic><topic>Scattering angle</topic><topic>Spectrum analysis</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Rozen, Shaked</creatorcontrib><creatorcontrib>Clergerie, Alex</creatorcontrib><creatorcontrib>Mairesse, Yann</creatorcontrib><creatorcontrib>Fabre, Baptiste</creatorcontrib><creatorcontrib>Pons, Bernard</creatorcontrib><creatorcontrib>Bruner, Barry D</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azoury, Doron</au><au>Kneller, Omer</au><au>Rozen, Shaked</au><au>Clergerie, Alex</au><au>Mairesse, Yann</au><au>Fabre, Baptiste</au><au>Pons, Bernard</au><au>Bruner, Barry D</au><au>Dudovich, Nirit</au><au>Krüger, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Probing electronic wavefunctions by all-optical attosecond interferometry</atitle><jtitle>arXiv.org</jtitle><date>2018-10-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photo-ionization -- photo-recombination -- in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2118631468 |
source | Free E- Journals |
subjects | Argon Attosecond pulses Dipoles Electrons Helium Interferometry Ionization Light sources Mechanical properties Neon Orbital resonances (celestial mechanics) Phase retrieval Photoelectron spectroscopy Photoelectrons Quantum mechanics Scattering angle Spectrum analysis Wave functions |
title | Probing electronic wavefunctions by all-optical attosecond interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Probing%20electronic%20wavefunctions%20by%20all-optical%20attosecond%20interferometry&rft.jtitle=arXiv.org&rft.au=Azoury,%20Doron&rft.date=2018-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2118631468%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118631468&rft_id=info:pmid/&rfr_iscdi=true |