Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size
This work presents the procedure for constructing a machine learned surrogate model for hotspot ignition and growth rates in pressed HMX materials. A Bayesian Kriging algorithm is used to assimilate input data obtained from high-resolution meso-scale simulations. The surrogates are built by generati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nassar, Anas Rai, Nirmal K Sen, Oishik Udaykumar, H S |
description | This work presents the procedure for constructing a machine learned surrogate model for hotspot ignition and growth rates in pressed HMX materials. A Bayesian Kriging algorithm is used to assimilate input data obtained from high-resolution meso-scale simulations. The surrogates are built by generating a sparse set of training data using reactive meso-scale simulations of void collapse by varying loading conditions and void sizes. Insights into the physics of void collapse and ignition and growth of hotspots are obtained. The criticality envelope for hotspots is obtained as the function {\Sigma}_cr=f(P_s,D_void ) where P_s is the imposed shock pressure and D_void is the void size. Criticality of hotspots is classified into the plastic collapse and hydrodynamic jetting regimes. The information obtained from the surrogate models for hotspot ignition and growth rates and the criticality envelope can be utilized in meso-informed Ignition and Growth (MES-IG) models to perform multi-scale simulations of pressed HMX materials. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118631387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118631387</sourcerecordid><originalsourceid>FETCH-proquest_journals_21186313873</originalsourceid><addsrcrecordid>eNqNjc2KwjAUhYMgjKjvcMGthTbxp7gdFGchzMKFu3Jpb2qcNHdMUmFc--ATwQdwdTicj-8MxEgqVWTlQsoPMQ3hkue5XK3lcqlG4nHghqxxLXQUOAs1WgJy5Ns_sJyauWM07MA4CGeuf6iB_eE0h2_0Eb420GF9No4ysITepTX03nOLkaB7qkGzB9Ka6giskxOb5xu6Bm5sEm7uNBFDjTbQ9JVjMdttj5_77NfztacQqwv33qWpkkVRrlShyrV6j_oH5zJRIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118631387</pqid></control><display><type>article</type><title>Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size</title><source>Free E- Journals</source><creator>Nassar, Anas ; Rai, Nirmal K ; Sen, Oishik ; Udaykumar, H S</creator><creatorcontrib>Nassar, Anas ; Rai, Nirmal K ; Sen, Oishik ; Udaykumar, H S</creatorcontrib><description>This work presents the procedure for constructing a machine learned surrogate model for hotspot ignition and growth rates in pressed HMX materials. A Bayesian Kriging algorithm is used to assimilate input data obtained from high-resolution meso-scale simulations. The surrogates are built by generating a sparse set of training data using reactive meso-scale simulations of void collapse by varying loading conditions and void sizes. Insights into the physics of void collapse and ignition and growth of hotspots are obtained. The criticality envelope for hotspots is obtained as the function {\Sigma}_cr=f(P_s,D_void ) where P_s is the imposed shock pressure and D_void is the void size. Criticality of hotspots is classified into the plastic collapse and hydrodynamic jetting regimes. The information obtained from the surrogate models for hotspot ignition and growth rates and the criticality envelope can be utilized in meso-informed Ignition and Growth (MES-IG) models to perform multi-scale simulations of pressed HMX materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Computer simulation ; HMX ; Ignition ; Kriging interpolation ; Mesoscale phenomena ; Plastic collapse ; Simulation</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Nassar, Anas</creatorcontrib><creatorcontrib>Rai, Nirmal K</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Udaykumar, H S</creatorcontrib><title>Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size</title><title>arXiv.org</title><description>This work presents the procedure for constructing a machine learned surrogate model for hotspot ignition and growth rates in pressed HMX materials. A Bayesian Kriging algorithm is used to assimilate input data obtained from high-resolution meso-scale simulations. The surrogates are built by generating a sparse set of training data using reactive meso-scale simulations of void collapse by varying loading conditions and void sizes. Insights into the physics of void collapse and ignition and growth of hotspots are obtained. The criticality envelope for hotspots is obtained as the function {\Sigma}_cr=f(P_s,D_void ) where P_s is the imposed shock pressure and D_void is the void size. Criticality of hotspots is classified into the plastic collapse and hydrodynamic jetting regimes. The information obtained from the surrogate models for hotspot ignition and growth rates and the criticality envelope can be utilized in meso-informed Ignition and Growth (MES-IG) models to perform multi-scale simulations of pressed HMX materials.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>HMX</subject><subject>Ignition</subject><subject>Kriging interpolation</subject><subject>Mesoscale phenomena</subject><subject>Plastic collapse</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc2KwjAUhYMgjKjvcMGthTbxp7gdFGchzMKFu3Jpb2qcNHdMUmFc--ATwQdwdTicj-8MxEgqVWTlQsoPMQ3hkue5XK3lcqlG4nHghqxxLXQUOAs1WgJy5Ns_sJyauWM07MA4CGeuf6iB_eE0h2_0Eb420GF9No4ysITepTX03nOLkaB7qkGzB9Ka6giskxOb5xu6Bm5sEm7uNBFDjTbQ9JVjMdttj5_77NfztacQqwv33qWpkkVRrlShyrV6j_oH5zJRIA</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Nassar, Anas</creator><creator>Rai, Nirmal K</creator><creator>Sen, Oishik</creator><creator>Udaykumar, H S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181009</creationdate><title>Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size</title><author>Nassar, Anas ; Rai, Nirmal K ; Sen, Oishik ; Udaykumar, H S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21186313873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>HMX</topic><topic>Ignition</topic><topic>Kriging interpolation</topic><topic>Mesoscale phenomena</topic><topic>Plastic collapse</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Nassar, Anas</creatorcontrib><creatorcontrib>Rai, Nirmal K</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Udaykumar, H S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nassar, Anas</au><au>Rai, Nirmal K</au><au>Sen, Oishik</au><au>Udaykumar, H S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size</atitle><jtitle>arXiv.org</jtitle><date>2018-10-09</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>This work presents the procedure for constructing a machine learned surrogate model for hotspot ignition and growth rates in pressed HMX materials. A Bayesian Kriging algorithm is used to assimilate input data obtained from high-resolution meso-scale simulations. The surrogates are built by generating a sparse set of training data using reactive meso-scale simulations of void collapse by varying loading conditions and void sizes. Insights into the physics of void collapse and ignition and growth of hotspots are obtained. The criticality envelope for hotspots is obtained as the function {\Sigma}_cr=f(P_s,D_void ) where P_s is the imposed shock pressure and D_void is the void size. Criticality of hotspots is classified into the plastic collapse and hydrodynamic jetting regimes. The information obtained from the surrogate models for hotspot ignition and growth rates and the criticality envelope can be utilized in meso-informed Ignition and Growth (MES-IG) models to perform multi-scale simulations of pressed HMX materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2118631387 |
source | Free E- Journals |
subjects | Algorithms Bayesian analysis Computer simulation HMX Ignition Kriging interpolation Mesoscale phenomena Plastic collapse Simulation |
title | Modeling meso-scale energy localization in shocked HMX, Part I: machine- learned surrogate model for effect of loading and void size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20meso-scale%20energy%20localization%20in%20shocked%20HMX,%20Part%20I:%20machine-%20learned%20surrogate%20model%20for%20effect%20of%20loading%20and%20void%20size&rft.jtitle=arXiv.org&rft.au=Nassar,%20Anas&rft.date=2018-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2118631387%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118631387&rft_id=info:pmid/&rfr_iscdi=true |