The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity

We generalize the positive solution of the Frobenius conjecture and refinements thereof by studying the structure of groups that admit a fix-point-free automorphism satisfying an identity. We show, in particular, that for every polynomial \(r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
1. Verfasser: Moens, Wolfgang Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Moens, Wolfgang Alexander
description We generalize the positive solution of the Frobenius conjecture and refinements thereof by studying the structure of groups that admit a fix-point-free automorphism satisfying an identity. We show, in particular, that for every polynomial \(r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \mathbb{Z}[t]\) that is irreducible over \(\mathbb{Q}\), there exist (explicit) invariants \(a,b,c \in \mathbb{N}\) with the following property. Consider a finite group with a fix-point-free automorphism \({\alpha}:{G}\longrightarrow{G}\) and suppose that for all \(x \in G\) we have the equality \(x^{a_0} \cdot \alpha(x^{a_1}) \cdot \alpha^2(x^{a_2})\cdots \alpha^d(x^{a_d}) = 1_G.\) Then \(G\) is solvable and of the form \(A \cdot (B \rtimes (C \times D))\), where \(A\) is an \(a\)-group, \(B\) is a \(b\)-group, \(C\) is a nilpotent \(c\)-group, and \(D\) is a nilpotent group of class at most \(d^{2^d}\). Here, a group \(H\) is said to be an \(a\)-group (resp. \(b\)-group or \(c\)-group) if the order of every \(h \in H\) divides some natural power of \(a\) (resp. \(b\) or \(c\)).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2118629900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118629900</sourcerecordid><originalsourceid>FETCH-proquest_journals_21186299003</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPAcSFNb27MoPqAXTxI0abe0SUy2aH9vDz7A08DMrFgi8zzj1UHKDUtj7IUQsjzKosgTdms6DRYH70jbxwzOgEGLpKENbvIR3kgdqEV-uHdoiZugNaiJ3OiC7zCOEBVhNDPaFpQFfGpLSPOOrY0aok5_3LL95dycrtwH95p0pHvvpmCXdJdZVpWyroXI_7u-P09DEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118629900</pqid></control><display><type>article</type><title>The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity</title><source>Free E- Journals</source><creator>Moens, Wolfgang Alexander</creator><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><description>We generalize the positive solution of the Frobenius conjecture and refinements thereof by studying the structure of groups that admit a fix-point-free automorphism satisfying an identity. We show, in particular, that for every polynomial \(r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \mathbb{Z}[t]\) that is irreducible over \(\mathbb{Q}\), there exist (explicit) invariants \(a,b,c \in \mathbb{N}\) with the following property. Consider a finite group with a fix-point-free automorphism \({\alpha}:{G}\longrightarrow{G}\) and suppose that for all \(x \in G\) we have the equality \(x^{a_0} \cdot \alpha(x^{a_1}) \cdot \alpha^2(x^{a_2})\cdots \alpha^d(x^{a_d}) = 1_G.\) Then \(G\) is solvable and of the form \(A \cdot (B \rtimes (C \times D))\), where \(A\) is an \(a\)-group, \(B\) is a \(b\)-group, \(C\) is a nilpotent \(c\)-group, and \(D\) is a nilpotent group of class at most \(d^{2^d}\). Here, a group \(H\) is said to be an \(a\)-group (resp. \(b\)-group or \(c\)-group) if the order of every \(h \in H\) divides some natural power of \(a\) (resp. \(b\) or \(c\)).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Polynomials ; Subgroups</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><title>The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity</title><title>arXiv.org</title><description>We generalize the positive solution of the Frobenius conjecture and refinements thereof by studying the structure of groups that admit a fix-point-free automorphism satisfying an identity. We show, in particular, that for every polynomial \(r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \mathbb{Z}[t]\) that is irreducible over \(\mathbb{Q}\), there exist (explicit) invariants \(a,b,c \in \mathbb{N}\) with the following property. Consider a finite group with a fix-point-free automorphism \({\alpha}:{G}\longrightarrow{G}\) and suppose that for all \(x \in G\) we have the equality \(x^{a_0} \cdot \alpha(x^{a_1}) \cdot \alpha^2(x^{a_2})\cdots \alpha^d(x^{a_d}) = 1_G.\) Then \(G\) is solvable and of the form \(A \cdot (B \rtimes (C \times D))\), where \(A\) is an \(a\)-group, \(B\) is a \(b\)-group, \(C\) is a nilpotent \(c\)-group, and \(D\) is a nilpotent group of class at most \(d^{2^d}\). Here, a group \(H\) is said to be an \(a\)-group (resp. \(b\)-group or \(c\)-group) if the order of every \(h \in H\) divides some natural power of \(a\) (resp. \(b\) or \(c\)).</description><subject>Automorphisms</subject><subject>Polynomials</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPAcSFNb27MoPqAXTxI0abe0SUy2aH9vDz7A08DMrFgi8zzj1UHKDUtj7IUQsjzKosgTdms6DRYH70jbxwzOgEGLpKENbvIR3kgdqEV-uHdoiZugNaiJ3OiC7zCOEBVhNDPaFpQFfGpLSPOOrY0aok5_3LL95dycrtwH95p0pHvvpmCXdJdZVpWyroXI_7u-P09DEA</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Moens, Wolfgang Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200909</creationdate><title>The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity</title><author>Moens, Wolfgang Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21186299003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automorphisms</topic><topic>Polynomials</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moens, Wolfgang Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity</atitle><jtitle>arXiv.org</jtitle><date>2020-09-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We generalize the positive solution of the Frobenius conjecture and refinements thereof by studying the structure of groups that admit a fix-point-free automorphism satisfying an identity. We show, in particular, that for every polynomial \(r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \mathbb{Z}[t]\) that is irreducible over \(\mathbb{Q}\), there exist (explicit) invariants \(a,b,c \in \mathbb{N}\) with the following property. Consider a finite group with a fix-point-free automorphism \({\alpha}:{G}\longrightarrow{G}\) and suppose that for all \(x \in G\) we have the equality \(x^{a_0} \cdot \alpha(x^{a_1}) \cdot \alpha^2(x^{a_2})\cdots \alpha^d(x^{a_d}) = 1_G.\) Then \(G\) is solvable and of the form \(A \cdot (B \rtimes (C \times D))\), where \(A\) is an \(a\)-group, \(B\) is a \(b\)-group, \(C\) is a nilpotent \(c\)-group, and \(D\) is a nilpotent group of class at most \(d^{2^d}\). Here, a group \(H\) is said to be an \(a\)-group (resp. \(b\)-group or \(c\)-group) if the order of every \(h \in H\) divides some natural power of \(a\) (resp. \(b\) or \(c\)).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2118629900
source Free E- Journals
subjects Automorphisms
Polynomials
Subgroups
title The nilpotency of finite groups with a fix-point-free automorphism satisfying an identity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20nilpotency%20of%20finite%20groups%20with%20a%20fix-point-free%20automorphism%20satisfying%20an%20identity&rft.jtitle=arXiv.org&rft.au=Moens,%20Wolfgang%20Alexander&rft.date=2020-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2118629900%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118629900&rft_id=info:pmid/&rfr_iscdi=true