Circuit designs for superconducting optoelectronic loop neurons

Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-10, Vol.124 (15)
Hauptverfasser: Shainline, Jeffrey M., Buckley, Sonia M., McCaughan, Adam N., Chiles, Jeff, Jafari-Salim, Amir, Mirin, Richard P., Nam, Sae Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 124
creator Shainline, Jeffrey M.
Buckley, Sonia M.
McCaughan, Adam N.
Chiles, Jeff
Jafari-Salim, Amir
Mirin, Richard P.
Nam, Sae Woo
description Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10 − 3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.
doi_str_mv 10.1063/1.5038031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118557041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118557041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNCdaZpm-QksvgFC170HOI0WbKsTU1SwX9vZRc9CJ6GgYd3mJexU4RLhJZf4WUDXALHPTZDkKoUTQP7bAZQYSmVUIfsKKU1AKLkasauFz7S6HPR2eRXfSpciEUaBxsp9N1I2ferIgw52I2lHEPvqdiEMBS9HactHbMDZzbJnuzmnL3c3T4vHsrl0_3j4mZZElc8l9YIBFVXkrCqhBMEIGSnXAuVtcitMM7UDclXItMq2XHDuXQ12bbtakTH5-xsmzvE8D7alPU6jLGfTupqeqVpBNQ4qfOtohhSitbpIfo3Ez81gv7uR6Pe9TPZi61N5LPJPvQ_-CPEX6iHzv2H_yZ_AaXZc8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118557041</pqid></control><display><type>article</type><title>Circuit designs for superconducting optoelectronic loop neurons</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</creator><creatorcontrib>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</creatorcontrib><description>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10 − 3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5038031</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Brain ; Circuit design ; Communication ; Computation ; Detectors ; Dielectric waveguides ; Energy efficiency ; Fanout ; Josephson junctions ; Light sources ; Neurons ; Optical communication ; Optoelectronics ; Organic light emitting diodes ; Photons ; Power efficiency ; Quantum computing ; Superconductivity ; Synchronism ; Tolerances</subject><ispartof>Journal of applied physics, 2018-10, Vol.124 (15)</ispartof><rights>U.S. Government</rights><rights>2018U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</citedby><cites>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</cites><orcidid>0000-0002-6102-5880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5038031$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Shainline, Jeffrey M.</creatorcontrib><creatorcontrib>Buckley, Sonia M.</creatorcontrib><creatorcontrib>McCaughan, Adam N.</creatorcontrib><creatorcontrib>Chiles, Jeff</creatorcontrib><creatorcontrib>Jafari-Salim, Amir</creatorcontrib><creatorcontrib>Mirin, Richard P.</creatorcontrib><creatorcontrib>Nam, Sae Woo</creatorcontrib><title>Circuit designs for superconducting optoelectronic loop neurons</title><title>Journal of applied physics</title><description>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10 − 3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</description><subject>Applied physics</subject><subject>Brain</subject><subject>Circuit design</subject><subject>Communication</subject><subject>Computation</subject><subject>Detectors</subject><subject>Dielectric waveguides</subject><subject>Energy efficiency</subject><subject>Fanout</subject><subject>Josephson junctions</subject><subject>Light sources</subject><subject>Neurons</subject><subject>Optical communication</subject><subject>Optoelectronics</subject><subject>Organic light emitting diodes</subject><subject>Photons</subject><subject>Power efficiency</subject><subject>Quantum computing</subject><subject>Superconductivity</subject><subject>Synchronism</subject><subject>Tolerances</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNCdaZpm-QksvgFC170HOI0WbKsTU1SwX9vZRc9CJ6GgYd3mJexU4RLhJZf4WUDXALHPTZDkKoUTQP7bAZQYSmVUIfsKKU1AKLkasauFz7S6HPR2eRXfSpciEUaBxsp9N1I2ferIgw52I2lHEPvqdiEMBS9HactHbMDZzbJnuzmnL3c3T4vHsrl0_3j4mZZElc8l9YIBFVXkrCqhBMEIGSnXAuVtcitMM7UDclXItMq2XHDuXQ12bbtakTH5-xsmzvE8D7alPU6jLGfTupqeqVpBNQ4qfOtohhSitbpIfo3Ez81gv7uR6Pe9TPZi61N5LPJPvQ_-CPEX6iHzv2H_yZ_AaXZc8k</recordid><startdate>20181021</startdate><enddate>20181021</enddate><creator>Shainline, Jeffrey M.</creator><creator>Buckley, Sonia M.</creator><creator>McCaughan, Adam N.</creator><creator>Chiles, Jeff</creator><creator>Jafari-Salim, Amir</creator><creator>Mirin, Richard P.</creator><creator>Nam, Sae Woo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6102-5880</orcidid></search><sort><creationdate>20181021</creationdate><title>Circuit designs for superconducting optoelectronic loop neurons</title><author>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Brain</topic><topic>Circuit design</topic><topic>Communication</topic><topic>Computation</topic><topic>Detectors</topic><topic>Dielectric waveguides</topic><topic>Energy efficiency</topic><topic>Fanout</topic><topic>Josephson junctions</topic><topic>Light sources</topic><topic>Neurons</topic><topic>Optical communication</topic><topic>Optoelectronics</topic><topic>Organic light emitting diodes</topic><topic>Photons</topic><topic>Power efficiency</topic><topic>Quantum computing</topic><topic>Superconductivity</topic><topic>Synchronism</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shainline, Jeffrey M.</creatorcontrib><creatorcontrib>Buckley, Sonia M.</creatorcontrib><creatorcontrib>McCaughan, Adam N.</creatorcontrib><creatorcontrib>Chiles, Jeff</creatorcontrib><creatorcontrib>Jafari-Salim, Amir</creatorcontrib><creatorcontrib>Mirin, Richard P.</creatorcontrib><creatorcontrib>Nam, Sae Woo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shainline, Jeffrey M.</au><au>Buckley, Sonia M.</au><au>McCaughan, Adam N.</au><au>Chiles, Jeff</au><au>Jafari-Salim, Amir</au><au>Mirin, Richard P.</au><au>Nam, Sae Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit designs for superconducting optoelectronic loop neurons</atitle><jtitle>Journal of applied physics</jtitle><date>2018-10-21</date><risdate>2018</risdate><volume>124</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10 − 3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5038031</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6102-5880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-10, Vol.124 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2118557041
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Brain
Circuit design
Communication
Computation
Detectors
Dielectric waveguides
Energy efficiency
Fanout
Josephson junctions
Light sources
Neurons
Optical communication
Optoelectronics
Organic light emitting diodes
Photons
Power efficiency
Quantum computing
Superconductivity
Synchronism
Tolerances
title Circuit designs for superconducting optoelectronic loop neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20designs%20for%20superconducting%20optoelectronic%20loop%20neurons&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shainline,%20Jeffrey%20M.&rft.date=2018-10-21&rft.volume=124&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5038031&rft_dat=%3Cproquest_cross%3E2118557041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118557041&rft_id=info:pmid/&rfr_iscdi=true