Circuit designs for superconducting optoelectronic loop neurons
Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting s...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-10, Vol.124 (15) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 124 |
creator | Shainline, Jeffrey M. Buckley, Sonia M. McCaughan, Adam N. Chiles, Jeff Jafari-Salim, Amir Mirin, Richard P. Nam, Sae Woo |
description | Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10
−
3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed. |
doi_str_mv | 10.1063/1.5038031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118557041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118557041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNCdaZpm-QksvgFC170HOI0WbKsTU1SwX9vZRc9CJ6GgYd3mJexU4RLhJZf4WUDXALHPTZDkKoUTQP7bAZQYSmVUIfsKKU1AKLkasauFz7S6HPR2eRXfSpciEUaBxsp9N1I2ferIgw52I2lHEPvqdiEMBS9HactHbMDZzbJnuzmnL3c3T4vHsrl0_3j4mZZElc8l9YIBFVXkrCqhBMEIGSnXAuVtcitMM7UDclXItMq2XHDuXQ12bbtakTH5-xsmzvE8D7alPU6jLGfTupqeqVpBNQ4qfOtohhSitbpIfo3Ez81gv7uR6Pe9TPZi61N5LPJPvQ_-CPEX6iHzv2H_yZ_AaXZc8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118557041</pqid></control><display><type>article</type><title>Circuit designs for superconducting optoelectronic loop neurons</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</creator><creatorcontrib>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</creatorcontrib><description>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10
−
3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5038031</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Brain ; Circuit design ; Communication ; Computation ; Detectors ; Dielectric waveguides ; Energy efficiency ; Fanout ; Josephson junctions ; Light sources ; Neurons ; Optical communication ; Optoelectronics ; Organic light emitting diodes ; Photons ; Power efficiency ; Quantum computing ; Superconductivity ; Synchronism ; Tolerances</subject><ispartof>Journal of applied physics, 2018-10, Vol.124 (15)</ispartof><rights>U.S. Government</rights><rights>2018U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</citedby><cites>FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</cites><orcidid>0000-0002-6102-5880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5038031$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Shainline, Jeffrey M.</creatorcontrib><creatorcontrib>Buckley, Sonia M.</creatorcontrib><creatorcontrib>McCaughan, Adam N.</creatorcontrib><creatorcontrib>Chiles, Jeff</creatorcontrib><creatorcontrib>Jafari-Salim, Amir</creatorcontrib><creatorcontrib>Mirin, Richard P.</creatorcontrib><creatorcontrib>Nam, Sae Woo</creatorcontrib><title>Circuit designs for superconducting optoelectronic loop neurons</title><title>Journal of applied physics</title><description>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10
−
3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</description><subject>Applied physics</subject><subject>Brain</subject><subject>Circuit design</subject><subject>Communication</subject><subject>Computation</subject><subject>Detectors</subject><subject>Dielectric waveguides</subject><subject>Energy efficiency</subject><subject>Fanout</subject><subject>Josephson junctions</subject><subject>Light sources</subject><subject>Neurons</subject><subject>Optical communication</subject><subject>Optoelectronics</subject><subject>Organic light emitting diodes</subject><subject>Photons</subject><subject>Power efficiency</subject><subject>Quantum computing</subject><subject>Superconductivity</subject><subject>Synchronism</subject><subject>Tolerances</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNCdaZpm-QksvgFC170HOI0WbKsTU1SwX9vZRc9CJ6GgYd3mJexU4RLhJZf4WUDXALHPTZDkKoUTQP7bAZQYSmVUIfsKKU1AKLkasauFz7S6HPR2eRXfSpciEUaBxsp9N1I2ferIgw52I2lHEPvqdiEMBS9HactHbMDZzbJnuzmnL3c3T4vHsrl0_3j4mZZElc8l9YIBFVXkrCqhBMEIGSnXAuVtcitMM7UDclXItMq2XHDuXQ12bbtakTH5-xsmzvE8D7alPU6jLGfTupqeqVpBNQ4qfOtohhSitbpIfo3Ez81gv7uR6Pe9TPZi61N5LPJPvQ_-CPEX6iHzv2H_yZ_AaXZc8k</recordid><startdate>20181021</startdate><enddate>20181021</enddate><creator>Shainline, Jeffrey M.</creator><creator>Buckley, Sonia M.</creator><creator>McCaughan, Adam N.</creator><creator>Chiles, Jeff</creator><creator>Jafari-Salim, Amir</creator><creator>Mirin, Richard P.</creator><creator>Nam, Sae Woo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6102-5880</orcidid></search><sort><creationdate>20181021</creationdate><title>Circuit designs for superconducting optoelectronic loop neurons</title><author>Shainline, Jeffrey M. ; Buckley, Sonia M. ; McCaughan, Adam N. ; Chiles, Jeff ; Jafari-Salim, Amir ; Mirin, Richard P. ; Nam, Sae Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ea7109428c1227f7c0078d9f602ee13e7afa45c8bcca698d3a338f4ce66d411f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Brain</topic><topic>Circuit design</topic><topic>Communication</topic><topic>Computation</topic><topic>Detectors</topic><topic>Dielectric waveguides</topic><topic>Energy efficiency</topic><topic>Fanout</topic><topic>Josephson junctions</topic><topic>Light sources</topic><topic>Neurons</topic><topic>Optical communication</topic><topic>Optoelectronics</topic><topic>Organic light emitting diodes</topic><topic>Photons</topic><topic>Power efficiency</topic><topic>Quantum computing</topic><topic>Superconductivity</topic><topic>Synchronism</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shainline, Jeffrey M.</creatorcontrib><creatorcontrib>Buckley, Sonia M.</creatorcontrib><creatorcontrib>McCaughan, Adam N.</creatorcontrib><creatorcontrib>Chiles, Jeff</creatorcontrib><creatorcontrib>Jafari-Salim, Amir</creatorcontrib><creatorcontrib>Mirin, Richard P.</creatorcontrib><creatorcontrib>Nam, Sae Woo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shainline, Jeffrey M.</au><au>Buckley, Sonia M.</au><au>McCaughan, Adam N.</au><au>Chiles, Jeff</au><au>Jafari-Salim, Amir</au><au>Mirin, Richard P.</au><au>Nam, Sae Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit designs for superconducting optoelectronic loop neurons</atitle><jtitle>Journal of applied physics</jtitle><date>2018-10-21</date><risdate>2018</risdate><volume>124</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Optical communication achieves high fanout and short delay advantageous for information integration in neural systems. Superconducting detectors enable signaling with single photons for maximal energy efficiency. We present designs of superconducting optoelectronic neurons based on superconducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with high energy efficiency, leveraging the strengths of light for communication and superconducting electronics for computation. The neurons send few-photon signals to synaptic connections. These signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Microscale light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of synaptic connections, and the use of light for communication enables synchronization of neurons across an area limited only by the distance light can travel within the period of a network oscillation. Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware platform combining them all has not been attempted. Compared to digital logic or quantum computing, device tolerances are relaxed. For this neural application, optical sources providing incoherent pulses with 10 000 photons produced with an efficiency of 10
−
3 operating at 20 MHz at 4.2 K are sufficient to enable a massively scalable neural computing platform with connectivity comparable to the brain and thirty thousand times higher speed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5038031</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6102-5880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-10, Vol.124 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2118557041 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Brain Circuit design Communication Computation Detectors Dielectric waveguides Energy efficiency Fanout Josephson junctions Light sources Neurons Optical communication Optoelectronics Organic light emitting diodes Photons Power efficiency Quantum computing Superconductivity Synchronism Tolerances |
title | Circuit designs for superconducting optoelectronic loop neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20designs%20for%20superconducting%20optoelectronic%20loop%20neurons&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shainline,%20Jeffrey%20M.&rft.date=2018-10-21&rft.volume=124&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5038031&rft_dat=%3Cproquest_cross%3E2118557041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118557041&rft_id=info:pmid/&rfr_iscdi=true |