An Operational Rapid Intensification Prediction Aid for the Western North Pacific
This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic fore...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2018-06, Vol.33 (3), p.799-811 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 3 |
container_start_page | 799 |
container_title | Weather and forecasting |
container_volume | 33 |
creator | Knaff, John A. Sampson, Charles R. Musgrave, Kate D. |
description | This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases. |
doi_str_mv | 10.1175/WAF-D-18-0012.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118382972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118382972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-aa1d6feb6291ce82774df1060aaabfba0b4e29cec9b7c954984bf599a81cd2b83</originalsourceid><addsrcrecordid>eNotkM1PAjEQxRujiYievTbxXOh0v9rjBkRJiKDRcGym3TYswd21XQ7-9y7gaSYz703e_Ah5BD4BKLLptlywOQPJOAcxgSsygkxwxtMkvSYjLqVgErL8ltzFuOeci0yoEXkvG7ruXMC-bhs80A_s6ooum941sfa1Pc_pJriqtue2HNa-DbTfObp1sXehoW9t6Hd0g_bkuCc3Hg_RPfzXMflaPH_OXtlq_bKclStmkyLvGSJUuXcmFwqsk6Io0soDzzkiGm-Qm9QJZZ1VprAqS5VMjc-UQgm2EkYmY_J0uduF9uc4JNH79hiGH6IWADKRQhViUE0vKhvaGIPzugv1N4ZfDVyfuOmBm55rkPrETUPyB22tYQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118382972</pqid></control><display><type>article</type><title>An Operational Rapid Intensification Prediction Aid for the Western North Pacific</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Knaff, John A. ; Sampson, Charles R. ; Musgrave, Kate D.</creator><creatorcontrib>Knaff, John A. ; Sampson, Charles R. ; Musgrave, Kate D.</creatorcontrib><description>This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-18-0012.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Amplification ; Atmospheric sciences ; Automation ; Climatology ; Cyclones ; Discriminant analysis ; Hurricanes ; Methods ; Probability theory ; Regression analysis ; Statistical analysis ; Statistical methods ; Thresholds ; Tropical climate ; Tropical cyclones ; Typhoons ; Weather forecasting</subject><ispartof>Weather and forecasting, 2018-06, Vol.33 (3), p.799-811</ispartof><rights>Copyright American Meteorological Society Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-aa1d6feb6291ce82774df1060aaabfba0b4e29cec9b7c954984bf599a81cd2b83</citedby><cites>FETCH-LOGICAL-c376t-aa1d6feb6291ce82774df1060aaabfba0b4e29cec9b7c954984bf599a81cd2b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3685,27933,27934</link.rule.ids></links><search><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Sampson, Charles R.</creatorcontrib><creatorcontrib>Musgrave, Kate D.</creatorcontrib><title>An Operational Rapid Intensification Prediction Aid for the Western North Pacific</title><title>Weather and forecasting</title><description>This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.</description><subject>Amplification</subject><subject>Atmospheric sciences</subject><subject>Automation</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>Discriminant analysis</subject><subject>Hurricanes</subject><subject>Methods</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Thresholds</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Typhoons</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1PAjEQxRujiYievTbxXOh0v9rjBkRJiKDRcGym3TYswd21XQ7-9y7gaSYz703e_Ah5BD4BKLLptlywOQPJOAcxgSsygkxwxtMkvSYjLqVgErL8ltzFuOeci0yoEXkvG7ruXMC-bhs80A_s6ooum941sfa1Pc_pJriqtue2HNa-DbTfObp1sXehoW9t6Hd0g_bkuCc3Hg_RPfzXMflaPH_OXtlq_bKclStmkyLvGSJUuXcmFwqsk6Io0soDzzkiGm-Qm9QJZZ1VprAqS5VMjc-UQgm2EkYmY_J0uduF9uc4JNH79hiGH6IWADKRQhViUE0vKhvaGIPzugv1N4ZfDVyfuOmBm55rkPrETUPyB22tYQw</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Knaff, John A.</creator><creator>Sampson, Charles R.</creator><creator>Musgrave, Kate D.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20180601</creationdate><title>An Operational Rapid Intensification Prediction Aid for the Western North Pacific</title><author>Knaff, John A. ; Sampson, Charles R. ; Musgrave, Kate D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-aa1d6feb6291ce82774df1060aaabfba0b4e29cec9b7c954984bf599a81cd2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Atmospheric sciences</topic><topic>Automation</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>Discriminant analysis</topic><topic>Hurricanes</topic><topic>Methods</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Thresholds</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Typhoons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Sampson, Charles R.</creatorcontrib><creatorcontrib>Musgrave, Kate D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career & Technical Education Database</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knaff, John A.</au><au>Sampson, Charles R.</au><au>Musgrave, Kate D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Operational Rapid Intensification Prediction Aid for the Western North Pacific</atitle><jtitle>Weather and forecasting</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>799</spage><epage>811</epage><pages>799-811</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><abstract>This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-18-0012.1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8156 |
ispartof | Weather and forecasting, 2018-06, Vol.33 (3), p.799-811 |
issn | 0882-8156 1520-0434 |
language | eng |
recordid | cdi_proquest_journals_2118382972 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amplification Atmospheric sciences Automation Climatology Cyclones Discriminant analysis Hurricanes Methods Probability theory Regression analysis Statistical analysis Statistical methods Thresholds Tropical climate Tropical cyclones Typhoons Weather forecasting |
title | An Operational Rapid Intensification Prediction Aid for the Western North Pacific |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Operational%20Rapid%20Intensification%20Prediction%20Aid%20for%20the%20Western%20North%20Pacific&rft.jtitle=Weather%20and%20forecasting&rft.au=Knaff,%20John%20A.&rft.date=2018-06-01&rft.volume=33&rft.issue=3&rft.spage=799&rft.epage=811&rft.pages=799-811&rft.issn=0882-8156&rft.eissn=1520-0434&rft_id=info:doi/10.1175/WAF-D-18-0012.1&rft_dat=%3Cproquest_cross%3E2118382972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118382972&rft_id=info:pmid/&rfr_iscdi=true |