Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)

Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2018-08, Vol.48 (8), p.1651-1674
Hauptverfasser: Zhang, Xuefeng, Chu, Peter C., Li, Wei, Liu, Chang, Zhang, Lianxin, Shao, Caixia, Zhang, Xiaoshuang, Chao, Guofang, Zhao, Yuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1674
container_issue 8
container_start_page 1651
container_title Journal of physical oceanography
container_volume 48
creator Zhang, Xuefeng
Chu, Peter C.
Li, Wei
Liu, Chang
Zhang, Lianxin
Shao, Caixia
Zhang, Xiaoshuang
Chao, Guofang
Zhao, Yuxin
description Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.
doi_str_mv 10.1175/JPO-D-17-0132.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118379838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118379838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoOKdnrwEvesiWL2mb9CibuslkovMc0ix1HWtTkxbcvzdlnj54ed7ngxehW6ATAJFOX9_XZE5AEAqcTeAMjSBllNBEpudoRCljhGeCXqKrEPaU0gxYPkL9sm616bAr8Uo333VfebzpfdEfbGMsdg3udhZvdtbX-oA_bGhdE-yAD_naWN3gz96XOsJv1a_dRs3Rety5GLfWd8d256Jloasu-vE9ozR9uEYXpT4Ee_N_x-jr-WkzW5DV-mU5e1wRw4F2RDCrmRA5JHIroMg55Dq1pcyFyTPGtkYXgktaMMMTbmWRQWYyFqsiK5lkCR-ju5O39e6nt6FTe9f7Jr5UDEBykUsuIzU9Uca7ELwtVeurWvujAqqGbVXcVs0VCDVsq4D_Ae5baqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118379838</pqid></control><display><type>article</type><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</creator><creatorcontrib>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</creatorcontrib><description>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-17-0132.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Computational fluid dynamics ; Computer simulation ; Cooling ; Coordinate systems ; Coordinates ; Coriolis force ; Frameworks ; Geostrophy ; Gravitational waves ; Heat exchangers ; Heat pumps ; Horizontal advection ; Hurricanes ; Lagrangian coordinates ; Langmuir turbulence ; Mixed layer ; Mixed layer depth ; Ocean circulation ; Ocean mixed layer ; Ocean models ; Ocean surface ; Ocean temperature ; Oceans ; Sea surface ; Sea surface cooling ; Sea surface temperature ; Suction ; Surface cooling ; Surface mixed layer ; Thermal response ; Turbulence ; Turbulent fluxes ; Typhoons ; Vorticity ; Wind</subject><ispartof>Journal of physical oceanography, 2018-08, Vol.48 (8), p.1651-1674</ispartof><rights>Copyright American Meteorological Society Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</citedby><cites>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Chu, Peter C.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Lianxin</creatorcontrib><creatorcontrib>Shao, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiaoshuang</creatorcontrib><creatorcontrib>Chao, Guofang</creatorcontrib><creatorcontrib>Zhao, Yuxin</creatorcontrib><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><title>Journal of physical oceanography</title><description>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</description><subject>Advection</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Coordinate systems</subject><subject>Coordinates</subject><subject>Coriolis force</subject><subject>Frameworks</subject><subject>Geostrophy</subject><subject>Gravitational waves</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Horizontal advection</subject><subject>Hurricanes</subject><subject>Lagrangian coordinates</subject><subject>Langmuir turbulence</subject><subject>Mixed layer</subject><subject>Mixed layer depth</subject><subject>Ocean circulation</subject><subject>Ocean mixed layer</subject><subject>Ocean models</subject><subject>Ocean surface</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Sea surface</subject><subject>Sea surface cooling</subject><subject>Sea surface temperature</subject><subject>Suction</subject><subject>Surface cooling</subject><subject>Surface mixed layer</subject><subject>Thermal response</subject><subject>Turbulence</subject><subject>Turbulent fluxes</subject><subject>Typhoons</subject><subject>Vorticity</subject><subject>Wind</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEFLwzAYhoMoOKdnrwEvesiWL2mb9CibuslkovMc0ix1HWtTkxbcvzdlnj54ed7ngxehW6ATAJFOX9_XZE5AEAqcTeAMjSBllNBEpudoRCljhGeCXqKrEPaU0gxYPkL9sm616bAr8Uo333VfebzpfdEfbGMsdg3udhZvdtbX-oA_bGhdE-yAD_naWN3gz96XOsJv1a_dRs3Rety5GLfWd8d256Jloasu-vE9ozR9uEYXpT4Ee_N_x-jr-WkzW5DV-mU5e1wRw4F2RDCrmRA5JHIroMg55Dq1pcyFyTPGtkYXgktaMMMTbmWRQWYyFqsiK5lkCR-ju5O39e6nt6FTe9f7Jr5UDEBykUsuIzU9Uca7ELwtVeurWvujAqqGbVXcVs0VCDVsq4D_Ae5baqw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Zhang, Xuefeng</creator><creator>Chu, Peter C.</creator><creator>Li, Wei</creator><creator>Liu, Chang</creator><creator>Zhang, Lianxin</creator><creator>Shao, Caixia</creator><creator>Zhang, Xiaoshuang</creator><creator>Chao, Guofang</creator><creator>Zhao, Yuxin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201808</creationdate><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><author>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Coordinate systems</topic><topic>Coordinates</topic><topic>Coriolis force</topic><topic>Frameworks</topic><topic>Geostrophy</topic><topic>Gravitational waves</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Horizontal advection</topic><topic>Hurricanes</topic><topic>Lagrangian coordinates</topic><topic>Langmuir turbulence</topic><topic>Mixed layer</topic><topic>Mixed layer depth</topic><topic>Ocean circulation</topic><topic>Ocean mixed layer</topic><topic>Ocean models</topic><topic>Ocean surface</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Sea surface</topic><topic>Sea surface cooling</topic><topic>Sea surface temperature</topic><topic>Suction</topic><topic>Surface cooling</topic><topic>Surface mixed layer</topic><topic>Thermal response</topic><topic>Turbulence</topic><topic>Turbulent fluxes</topic><topic>Typhoons</topic><topic>Vorticity</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Chu, Peter C.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Lianxin</creatorcontrib><creatorcontrib>Shao, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiaoshuang</creatorcontrib><creatorcontrib>Chao, Guofang</creatorcontrib><creatorcontrib>Zhao, Yuxin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuefeng</au><au>Chu, Peter C.</au><au>Li, Wei</au><au>Liu, Chang</au><au>Zhang, Lianxin</au><au>Shao, Caixia</au><au>Zhang, Xiaoshuang</au><au>Chao, Guofang</au><au>Zhao, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</atitle><jtitle>Journal of physical oceanography</jtitle><date>2018-08</date><risdate>2018</risdate><volume>48</volume><issue>8</issue><spage>1651</spage><epage>1674</epage><pages>1651-1674</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-17-0132.1</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2018-08, Vol.48 (8), p.1651-1674
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_journals_2118379838
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Advection
Computational fluid dynamics
Computer simulation
Cooling
Coordinate systems
Coordinates
Coriolis force
Frameworks
Geostrophy
Gravitational waves
Heat exchangers
Heat pumps
Horizontal advection
Hurricanes
Lagrangian coordinates
Langmuir turbulence
Mixed layer
Mixed layer depth
Ocean circulation
Ocean mixed layer
Ocean models
Ocean surface
Ocean temperature
Oceans
Sea surface
Sea surface cooling
Sea surface temperature
Suction
Surface cooling
Surface mixed layer
Thermal response
Turbulence
Turbulent fluxes
Typhoons
Vorticity
Wind
title Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Langmuir%20Turbulence%20on%20the%20Thermal%20Response%20of%20the%20Ocean%20Surface%20Mixed%20Layer%20to%20Supertyphoon%20Haitang%20(2005)&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Zhang,%20Xuefeng&rft.date=2018-08&rft.volume=48&rft.issue=8&rft.spage=1651&rft.epage=1674&rft.pages=1651-1674&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-17-0132.1&rft_dat=%3Cproquest_cross%3E2118379838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118379838&rft_id=info:pmid/&rfr_iscdi=true