Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)
Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2018-08, Vol.48 (8), p.1651-1674 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1674 |
---|---|
container_issue | 8 |
container_start_page | 1651 |
container_title | Journal of physical oceanography |
container_volume | 48 |
creator | Zhang, Xuefeng Chu, Peter C. Li, Wei Liu, Chang Zhang, Lianxin Shao, Caixia Zhang, Xiaoshuang Chao, Guofang Zhao, Yuxin |
description | Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed. |
doi_str_mv | 10.1175/JPO-D-17-0132.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118379838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118379838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoOKdnrwEvesiWL2mb9CibuslkovMc0ix1HWtTkxbcvzdlnj54ed7ngxehW6ATAJFOX9_XZE5AEAqcTeAMjSBllNBEpudoRCljhGeCXqKrEPaU0gxYPkL9sm616bAr8Uo333VfebzpfdEfbGMsdg3udhZvdtbX-oA_bGhdE-yAD_naWN3gz96XOsJv1a_dRs3Rety5GLfWd8d256Jloasu-vE9ozR9uEYXpT4Ee_N_x-jr-WkzW5DV-mU5e1wRw4F2RDCrmRA5JHIroMg55Dq1pcyFyTPGtkYXgktaMMMTbmWRQWYyFqsiK5lkCR-ju5O39e6nt6FTe9f7Jr5UDEBykUsuIzU9Uca7ELwtVeurWvujAqqGbVXcVs0VCDVsq4D_Ae5baqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118379838</pqid></control><display><type>article</type><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</creator><creatorcontrib>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</creatorcontrib><description>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-17-0132.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Computational fluid dynamics ; Computer simulation ; Cooling ; Coordinate systems ; Coordinates ; Coriolis force ; Frameworks ; Geostrophy ; Gravitational waves ; Heat exchangers ; Heat pumps ; Horizontal advection ; Hurricanes ; Lagrangian coordinates ; Langmuir turbulence ; Mixed layer ; Mixed layer depth ; Ocean circulation ; Ocean mixed layer ; Ocean models ; Ocean surface ; Ocean temperature ; Oceans ; Sea surface ; Sea surface cooling ; Sea surface temperature ; Suction ; Surface cooling ; Surface mixed layer ; Thermal response ; Turbulence ; Turbulent fluxes ; Typhoons ; Vorticity ; Wind</subject><ispartof>Journal of physical oceanography, 2018-08, Vol.48 (8), p.1651-1674</ispartof><rights>Copyright American Meteorological Society Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</citedby><cites>FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Chu, Peter C.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Lianxin</creatorcontrib><creatorcontrib>Shao, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiaoshuang</creatorcontrib><creatorcontrib>Chao, Guofang</creatorcontrib><creatorcontrib>Zhao, Yuxin</creatorcontrib><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><title>Journal of physical oceanography</title><description>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</description><subject>Advection</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Coordinate systems</subject><subject>Coordinates</subject><subject>Coriolis force</subject><subject>Frameworks</subject><subject>Geostrophy</subject><subject>Gravitational waves</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Horizontal advection</subject><subject>Hurricanes</subject><subject>Lagrangian coordinates</subject><subject>Langmuir turbulence</subject><subject>Mixed layer</subject><subject>Mixed layer depth</subject><subject>Ocean circulation</subject><subject>Ocean mixed layer</subject><subject>Ocean models</subject><subject>Ocean surface</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Sea surface</subject><subject>Sea surface cooling</subject><subject>Sea surface temperature</subject><subject>Suction</subject><subject>Surface cooling</subject><subject>Surface mixed layer</subject><subject>Thermal response</subject><subject>Turbulence</subject><subject>Turbulent fluxes</subject><subject>Typhoons</subject><subject>Vorticity</subject><subject>Wind</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEFLwzAYhoMoOKdnrwEvesiWL2mb9CibuslkovMc0ix1HWtTkxbcvzdlnj54ed7ngxehW6ATAJFOX9_XZE5AEAqcTeAMjSBllNBEpudoRCljhGeCXqKrEPaU0gxYPkL9sm616bAr8Uo333VfebzpfdEfbGMsdg3udhZvdtbX-oA_bGhdE-yAD_naWN3gz96XOsJv1a_dRs3Rety5GLfWd8d256Jloasu-vE9ozR9uEYXpT4Ee_N_x-jr-WkzW5DV-mU5e1wRw4F2RDCrmRA5JHIroMg55Dq1pcyFyTPGtkYXgktaMMMTbmWRQWYyFqsiK5lkCR-ju5O39e6nt6FTe9f7Jr5UDEBykUsuIzU9Uca7ELwtVeurWvujAqqGbVXcVs0VCDVsq4D_Ae5baqw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Zhang, Xuefeng</creator><creator>Chu, Peter C.</creator><creator>Li, Wei</creator><creator>Liu, Chang</creator><creator>Zhang, Lianxin</creator><creator>Shao, Caixia</creator><creator>Zhang, Xiaoshuang</creator><creator>Chao, Guofang</creator><creator>Zhao, Yuxin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201808</creationdate><title>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</title><author>Zhang, Xuefeng ; Chu, Peter C. ; Li, Wei ; Liu, Chang ; Zhang, Lianxin ; Shao, Caixia ; Zhang, Xiaoshuang ; Chao, Guofang ; Zhao, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-72ea2779148d71b9319a5ef897c9622dcab7380b2c343e8b616c6231076f28243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Coordinate systems</topic><topic>Coordinates</topic><topic>Coriolis force</topic><topic>Frameworks</topic><topic>Geostrophy</topic><topic>Gravitational waves</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Horizontal advection</topic><topic>Hurricanes</topic><topic>Lagrangian coordinates</topic><topic>Langmuir turbulence</topic><topic>Mixed layer</topic><topic>Mixed layer depth</topic><topic>Ocean circulation</topic><topic>Ocean mixed layer</topic><topic>Ocean models</topic><topic>Ocean surface</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Sea surface</topic><topic>Sea surface cooling</topic><topic>Sea surface temperature</topic><topic>Suction</topic><topic>Surface cooling</topic><topic>Surface mixed layer</topic><topic>Thermal response</topic><topic>Turbulence</topic><topic>Turbulent fluxes</topic><topic>Typhoons</topic><topic>Vorticity</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Chu, Peter C.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Lianxin</creatorcontrib><creatorcontrib>Shao, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiaoshuang</creatorcontrib><creatorcontrib>Chao, Guofang</creatorcontrib><creatorcontrib>Zhao, Yuxin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuefeng</au><au>Chu, Peter C.</au><au>Li, Wei</au><au>Liu, Chang</au><au>Zhang, Lianxin</au><au>Shao, Caixia</au><au>Zhang, Xiaoshuang</au><au>Chao, Guofang</au><au>Zhao, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)</atitle><jtitle>Journal of physical oceanography</jtitle><date>2018-08</date><risdate>2018</risdate><volume>48</volume><issue>8</issue><spage>1651</spage><epage>1674</epage><pages>1651-1674</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-17-0132.1</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2018-08, Vol.48 (8), p.1651-1674 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_journals_2118379838 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Advection Computational fluid dynamics Computer simulation Cooling Coordinate systems Coordinates Coriolis force Frameworks Geostrophy Gravitational waves Heat exchangers Heat pumps Horizontal advection Hurricanes Lagrangian coordinates Langmuir turbulence Mixed layer Mixed layer depth Ocean circulation Ocean mixed layer Ocean models Ocean surface Ocean temperature Oceans Sea surface Sea surface cooling Sea surface temperature Suction Surface cooling Surface mixed layer Thermal response Turbulence Turbulent fluxes Typhoons Vorticity Wind |
title | Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Langmuir%20Turbulence%20on%20the%20Thermal%20Response%20of%20the%20Ocean%20Surface%20Mixed%20Layer%20to%20Supertyphoon%20Haitang%20(2005)&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Zhang,%20Xuefeng&rft.date=2018-08&rft.volume=48&rft.issue=8&rft.spage=1651&rft.epage=1674&rft.pages=1651-1674&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-17-0132.1&rft_dat=%3Cproquest_cross%3E2118379838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118379838&rft_id=info:pmid/&rfr_iscdi=true |