Equivalent Mathematical Programming Models of Pure Capital Rationing
In the applications of mathematical programming to the “pure capital rationing” problem, much of the attention has been focused on the search for an appropriate discount rate to account for the time value of money. The essential difficulty was first observed by Hirshleifer [10] in the classical econ...
Gespeichert in:
Veröffentlicht in: | Journal of financial and quantitative analysis 1978-06, Vol.13 (2), p.345-361 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 2 |
container_start_page | 345 |
container_title | Journal of financial and quantitative analysis |
container_volume | 13 |
creator | Bradley, Stephen P. Frey, Sherwood C. |
description | In the applications of mathematical programming to the “pure capital rationing” problem, much of the attention has been focused on the search for an appropriate discount rate to account for the time value of money. The essential difficulty was first observed by Hirshleifer [10] in the classical economics context: “The discount rate to be used for calculating present values…cannot be discovered until the solution is attained, and so is of no assistance in reaching the solution.” Baumol and Quandt [1] showed that this problem persists in the Lorie and Savage [11] and Weingartner [15, Chap. 3] mathematical programming formulation and concluded that: “If there is capital rationing and external rates of interest are irrelevant, we cannot simultaneously insist on a present value formulation of the objective function and have the relevant discount rates determined internally by our program.” They then went on to propose an alternative utility formulation of the objective function. |
doi_str_mv | 10.2307/2330391 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211836856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_2330391</cupid><jstor_id>2330391</jstor_id><sourcerecordid>2330391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3ecc7305b5150f28d87ffd6f49ed627b3aef361b87b07f7b55e82c2995ca2e823</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs4p_oUignhRzYdJ2kuZ2xQ6nF833oS0TWZn22xJKvrvzehQ8MKrczg8nHN4AThG8AITyC8xIZCkaAcMEKcsZiliu2AAIcYxgincBwfOLSHcDOAA3IzXXfUha9X6aCb9m2qkrwpZR3NrFlY2TdUuopkpVe0io6N5Z1U0kqvKB_IYqGkDOAR7WtZOHW3rELxMxs-j2zi7n96NrrO4IAn2MVFFwQmkOUUUapyUCde6ZPoqVSXDPCdSacJQnvAccs1zSlWCC5ymtJA4tGQITvq9K2vWnXJeLE1n23BSYIQSwhLKAjrrUWGNc1ZpsbJVI-2XQFBsEhLbhII87eXSeWP_YXHPKufV5w-T9l0wTjgVbPogaDZhT68sFdPgz7cPyCa3VblQv2_-3f0ND31-WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211836856</pqid></control><display><type>article</type><title>Equivalent Mathematical Programming Models of Pure Capital Rationing</title><source>Business Source Complete (EB_SDU_P3)</source><source>Cambridge Journals</source><source>JSTOR</source><creator>Bradley, Stephen P. ; Frey, Sherwood C.</creator><creatorcontrib>Bradley, Stephen P. ; Frey, Sherwood C.</creatorcontrib><description>In the applications of mathematical programming to the “pure capital rationing” problem, much of the attention has been focused on the search for an appropriate discount rate to account for the time value of money. The essential difficulty was first observed by Hirshleifer [10] in the classical economics context: “The discount rate to be used for calculating present values…cannot be discovered until the solution is attained, and so is of no assistance in reaching the solution.” Baumol and Quandt [1] showed that this problem persists in the Lorie and Savage [11] and Weingartner [15, Chap. 3] mathematical programming formulation and concluded that: “If there is capital rationing and external rates of interest are irrelevant, we cannot simultaneously insist on a present value formulation of the objective function and have the relevant discount rates determined internally by our program.” They then went on to propose an alternative utility formulation of the objective function.</description><identifier>ISSN: 0022-1090</identifier><identifier>EISSN: 1756-6916</identifier><identifier>DOI: 10.2307/2330391</identifier><identifier>CODEN: JFQAAC</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Budgets ; Capital ; Capital budgeting ; Capital investments ; Cash flow ; Constraints ; Decision making ; Discounts ; Earnings ; Financial budgets ; Financial investments ; Investments ; Mathematical models ; Mathematical programming ; Net present value ; Objective functions ; Present value ; Rationing ; Shadow prices</subject><ispartof>Journal of financial and quantitative analysis, 1978-06, Vol.13 (2), p.345-361</ispartof><rights>Copyright © School of Business Administration, University of Washington 1978</rights><rights>Copyright University of Washington June 1978</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3ecc7305b5150f28d87ffd6f49ed627b3aef361b87b07f7b55e82c2995ca2e823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2330391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022109000004622/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Bradley, Stephen P.</creatorcontrib><creatorcontrib>Frey, Sherwood C.</creatorcontrib><title>Equivalent Mathematical Programming Models of Pure Capital Rationing</title><title>Journal of financial and quantitative analysis</title><addtitle>J. Financ. Quant. Anal</addtitle><description>In the applications of mathematical programming to the “pure capital rationing” problem, much of the attention has been focused on the search for an appropriate discount rate to account for the time value of money. The essential difficulty was first observed by Hirshleifer [10] in the classical economics context: “The discount rate to be used for calculating present values…cannot be discovered until the solution is attained, and so is of no assistance in reaching the solution.” Baumol and Quandt [1] showed that this problem persists in the Lorie and Savage [11] and Weingartner [15, Chap. 3] mathematical programming formulation and concluded that: “If there is capital rationing and external rates of interest are irrelevant, we cannot simultaneously insist on a present value formulation of the objective function and have the relevant discount rates determined internally by our program.” They then went on to propose an alternative utility formulation of the objective function.</description><subject>Budgets</subject><subject>Capital</subject><subject>Capital budgeting</subject><subject>Capital investments</subject><subject>Cash flow</subject><subject>Constraints</subject><subject>Decision making</subject><subject>Discounts</subject><subject>Earnings</subject><subject>Financial budgets</subject><subject>Financial investments</subject><subject>Investments</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Net present value</subject><subject>Objective functions</subject><subject>Present value</subject><subject>Rationing</subject><subject>Shadow prices</subject><issn>0022-1090</issn><issn>1756-6916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs4p_oUignhRzYdJ2kuZ2xQ6nF833oS0TWZn22xJKvrvzehQ8MKrczg8nHN4AThG8AITyC8xIZCkaAcMEKcsZiliu2AAIcYxgincBwfOLSHcDOAA3IzXXfUha9X6aCb9m2qkrwpZR3NrFlY2TdUuopkpVe0io6N5Z1U0kqvKB_IYqGkDOAR7WtZOHW3rELxMxs-j2zi7n96NrrO4IAn2MVFFwQmkOUUUapyUCde6ZPoqVSXDPCdSacJQnvAccs1zSlWCC5ymtJA4tGQITvq9K2vWnXJeLE1n23BSYIQSwhLKAjrrUWGNc1ZpsbJVI-2XQFBsEhLbhII87eXSeWP_YXHPKufV5w-T9l0wTjgVbPogaDZhT68sFdPgz7cPyCa3VblQv2_-3f0ND31-WQ</recordid><startdate>19780601</startdate><enddate>19780601</enddate><creator>Bradley, Stephen P.</creator><creator>Frey, Sherwood C.</creator><general>Cambridge University Press</general><general>University of Washington Graduate School of Business Administration and the Western Finance Association</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19780601</creationdate><title>Equivalent Mathematical Programming Models of Pure Capital Rationing</title><author>Bradley, Stephen P. ; Frey, Sherwood C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3ecc7305b5150f28d87ffd6f49ed627b3aef361b87b07f7b55e82c2995ca2e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Budgets</topic><topic>Capital</topic><topic>Capital budgeting</topic><topic>Capital investments</topic><topic>Cash flow</topic><topic>Constraints</topic><topic>Decision making</topic><topic>Discounts</topic><topic>Earnings</topic><topic>Financial budgets</topic><topic>Financial investments</topic><topic>Investments</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Net present value</topic><topic>Objective functions</topic><topic>Present value</topic><topic>Rationing</topic><topic>Shadow prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, Stephen P.</creatorcontrib><creatorcontrib>Frey, Sherwood C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of financial and quantitative analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, Stephen P.</au><au>Frey, Sherwood C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Mathematical Programming Models of Pure Capital Rationing</atitle><jtitle>Journal of financial and quantitative analysis</jtitle><addtitle>J. Financ. Quant. Anal</addtitle><date>1978-06-01</date><risdate>1978</risdate><volume>13</volume><issue>2</issue><spage>345</spage><epage>361</epage><pages>345-361</pages><issn>0022-1090</issn><eissn>1756-6916</eissn><coden>JFQAAC</coden><abstract>In the applications of mathematical programming to the “pure capital rationing” problem, much of the attention has been focused on the search for an appropriate discount rate to account for the time value of money. The essential difficulty was first observed by Hirshleifer [10] in the classical economics context: “The discount rate to be used for calculating present values…cannot be discovered until the solution is attained, and so is of no assistance in reaching the solution.” Baumol and Quandt [1] showed that this problem persists in the Lorie and Savage [11] and Weingartner [15, Chap. 3] mathematical programming formulation and concluded that: “If there is capital rationing and external rates of interest are irrelevant, we cannot simultaneously insist on a present value formulation of the objective function and have the relevant discount rates determined internally by our program.” They then went on to propose an alternative utility formulation of the objective function.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2330391</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1090 |
ispartof | Journal of financial and quantitative analysis, 1978-06, Vol.13 (2), p.345-361 |
issn | 0022-1090 1756-6916 |
language | eng |
recordid | cdi_proquest_journals_211836856 |
source | Business Source Complete (EB_SDU_P3); Cambridge Journals; JSTOR |
subjects | Budgets Capital Capital budgeting Capital investments Cash flow Constraints Decision making Discounts Earnings Financial budgets Financial investments Investments Mathematical models Mathematical programming Net present value Objective functions Present value Rationing Shadow prices |
title | Equivalent Mathematical Programming Models of Pure Capital Rationing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Mathematical%20Programming%20Models%20of%20Pure%20Capital%20Rationing&rft.jtitle=Journal%20of%20financial%20and%20quantitative%20analysis&rft.au=Bradley,%20Stephen%20P.&rft.date=1978-06-01&rft.volume=13&rft.issue=2&rft.spage=345&rft.epage=361&rft.pages=345-361&rft.issn=0022-1090&rft.eissn=1756-6916&rft.coden=JFQAAC&rft_id=info:doi/10.2307/2330391&rft_dat=%3Cjstor_proqu%3E2330391%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211836856&rft_id=info:pmid/&rft_cupid=10_2307_2330391&rft_jstor_id=2330391&rfr_iscdi=true |