How local in time is the no-arbitrage property under capital gains taxes?
In frictionless financial markets, no-arbitrage is a local property in time. This means that a discrete time model is arbitrage-free if and only if there does not exist a one-period-arbitrage. With capital gains taxes, this equivalence fails. For a model with a linear tax and one non-shortable risky...
Gespeichert in:
Veröffentlicht in: | Mathematics and financial economics 2019-06, Vol.13 (3), p.329-358 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 3 |
container_start_page | 329 |
container_title | Mathematics and financial economics |
container_volume | 13 |
creator | Kühn, Christoph |
description | In frictionless financial markets, no-arbitrage is a local property in time. This means that a discrete time model is arbitrage-free if and only if there does not exist a one-period-arbitrage. With capital gains taxes, this equivalence fails. For a model with a linear tax and one non-shortable risky stock, we introduce the concept of
robust local no-arbitrage
(RLNA) as the weakest local condition which guarantees dynamic no-arbitrage. Under a sharp dichotomy condition, we prove (RLNA). Since no-one-period-arbitrage is necessary for no-arbitrage, the latter is sandwiched between two local conditions, which allows us to estimate its non-locality. Furthermore, we construct a stock price process such that two long positions in the same stock hedge each other. This puzzling phenomenon that cannot occur in arbitrage-free frictionless markets (or markets with proportional transaction costs) is used to show that no-arbitrage alone does not imply the existence of an equivalent separating measure if the probability space is infinite. Finally, we show that the model with a linear tax on capital gains can be written as a model with proportional transaction costs by introducing several fictitious securities. |
doi_str_mv | 10.1007/s11579-018-0230-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118141728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118141728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4a7b1e2e0e84af8b4cba081e4084180c4da46346e1e07366283eca84bc3316a53</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWGofwFvAc3RmkybZk0hRWyh40XPIptO6pd1dky3atzdlRU_OZebwfzPDx9g1wi0CmLuEODWlALQCCgnCnLERWl2IUms4_51NeckmKW0hlyyMVTBii3n7yXdt8DteN7yv98TrxPt34k0rfKzqPvoN8S62HcX-yA_NiiIPvqv7jGx83eS0_6J0f8Uu1n6XaPLTx-zt6fF1NhfLl-fF7GEpglRlL5Q3FVJBQFb5ta1UqDxYJAVWoYWgVl5pqTQhgZFaF1ZS8FZVQUrUfirH7GbYm3_6OFDq3bY9xCafdAWiRYUmM2OGQyrENqVIa9fFeu_j0SG4kzQ3SHNZmjtJcyYzxcCknG02FP82_w99A4vnbaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118141728</pqid></control><display><type>article</type><title>How local in time is the no-arbitrage property under capital gains taxes?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kühn, Christoph</creator><creatorcontrib>Kühn, Christoph</creatorcontrib><description>In frictionless financial markets, no-arbitrage is a local property in time. This means that a discrete time model is arbitrage-free if and only if there does not exist a one-period-arbitrage. With capital gains taxes, this equivalence fails. For a model with a linear tax and one non-shortable risky stock, we introduce the concept of
robust local no-arbitrage
(RLNA) as the weakest local condition which guarantees dynamic no-arbitrage. Under a sharp dichotomy condition, we prove (RLNA). Since no-one-period-arbitrage is necessary for no-arbitrage, the latter is sandwiched between two local conditions, which allows us to estimate its non-locality. Furthermore, we construct a stock price process such that two long positions in the same stock hedge each other. This puzzling phenomenon that cannot occur in arbitrage-free frictionless markets (or markets with proportional transaction costs) is used to show that no-arbitrage alone does not imply the existence of an equivalent separating measure if the probability space is infinite. Finally, we show that the model with a linear tax on capital gains can be written as a model with proportional transaction costs by introducing several fictitious securities.</description><identifier>ISSN: 1862-9679</identifier><identifier>EISSN: 1862-9660</identifier><identifier>DOI: 10.1007/s11579-018-0230-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Arbitrage ; Capital ; Capital gains ; Discrete time ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Equivalence ; Fictitious ; Finance ; Insurance ; Local conditions ; Locality ; Macroeconomics/Monetary Economics//Financial Economics ; Management ; Markets ; Mathematics ; Mathematics and Statistics ; Property ; Quantitative Finance ; Statistics for Business ; Taxation ; Taxes ; Transaction costs</subject><ispartof>Mathematics and financial economics, 2019-06, Vol.13 (3), p.329-358</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Mathematics and Financial Economics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4a7b1e2e0e84af8b4cba081e4084180c4da46346e1e07366283eca84bc3316a53</citedby><cites>FETCH-LOGICAL-c349t-4a7b1e2e0e84af8b4cba081e4084180c4da46346e1e07366283eca84bc3316a53</cites><orcidid>0000-0002-5605-5858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11579-018-0230-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11579-018-0230-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kühn, Christoph</creatorcontrib><title>How local in time is the no-arbitrage property under capital gains taxes?</title><title>Mathematics and financial economics</title><addtitle>Math Finan Econ</addtitle><description>In frictionless financial markets, no-arbitrage is a local property in time. This means that a discrete time model is arbitrage-free if and only if there does not exist a one-period-arbitrage. With capital gains taxes, this equivalence fails. For a model with a linear tax and one non-shortable risky stock, we introduce the concept of
robust local no-arbitrage
(RLNA) as the weakest local condition which guarantees dynamic no-arbitrage. Under a sharp dichotomy condition, we prove (RLNA). Since no-one-period-arbitrage is necessary for no-arbitrage, the latter is sandwiched between two local conditions, which allows us to estimate its non-locality. Furthermore, we construct a stock price process such that two long positions in the same stock hedge each other. This puzzling phenomenon that cannot occur in arbitrage-free frictionless markets (or markets with proportional transaction costs) is used to show that no-arbitrage alone does not imply the existence of an equivalent separating measure if the probability space is infinite. Finally, we show that the model with a linear tax on capital gains can be written as a model with proportional transaction costs by introducing several fictitious securities.</description><subject>Applications of Mathematics</subject><subject>Arbitrage</subject><subject>Capital</subject><subject>Capital gains</subject><subject>Discrete time</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Equivalence</subject><subject>Fictitious</subject><subject>Finance</subject><subject>Insurance</subject><subject>Local conditions</subject><subject>Locality</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Management</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Property</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Taxation</subject><subject>Taxes</subject><subject>Transaction costs</subject><issn>1862-9679</issn><issn>1862-9660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEQhoMoWGofwFvAc3RmkybZk0hRWyh40XPIptO6pd1dky3atzdlRU_OZebwfzPDx9g1wi0CmLuEODWlALQCCgnCnLERWl2IUms4_51NeckmKW0hlyyMVTBii3n7yXdt8DteN7yv98TrxPt34k0rfKzqPvoN8S62HcX-yA_NiiIPvqv7jGx83eS0_6J0f8Uu1n6XaPLTx-zt6fF1NhfLl-fF7GEpglRlL5Q3FVJBQFb5ta1UqDxYJAVWoYWgVl5pqTQhgZFaF1ZS8FZVQUrUfirH7GbYm3_6OFDq3bY9xCafdAWiRYUmM2OGQyrENqVIa9fFeu_j0SG4kzQ3SHNZmjtJcyYzxcCknG02FP82_w99A4vnbaI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kühn, Christoph</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5605-5858</orcidid></search><sort><creationdate>20190601</creationdate><title>How local in time is the no-arbitrage property under capital gains taxes?</title><author>Kühn, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4a7b1e2e0e84af8b4cba081e4084180c4da46346e1e07366283eca84bc3316a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Arbitrage</topic><topic>Capital</topic><topic>Capital gains</topic><topic>Discrete time</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Equivalence</topic><topic>Fictitious</topic><topic>Finance</topic><topic>Insurance</topic><topic>Local conditions</topic><topic>Locality</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Management</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Property</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Taxation</topic><topic>Taxes</topic><topic>Transaction costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühn, Christoph</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics and financial economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühn, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How local in time is the no-arbitrage property under capital gains taxes?</atitle><jtitle>Mathematics and financial economics</jtitle><stitle>Math Finan Econ</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>329</spage><epage>358</epage><pages>329-358</pages><issn>1862-9679</issn><eissn>1862-9660</eissn><abstract>In frictionless financial markets, no-arbitrage is a local property in time. This means that a discrete time model is arbitrage-free if and only if there does not exist a one-period-arbitrage. With capital gains taxes, this equivalence fails. For a model with a linear tax and one non-shortable risky stock, we introduce the concept of
robust local no-arbitrage
(RLNA) as the weakest local condition which guarantees dynamic no-arbitrage. Under a sharp dichotomy condition, we prove (RLNA). Since no-one-period-arbitrage is necessary for no-arbitrage, the latter is sandwiched between two local conditions, which allows us to estimate its non-locality. Furthermore, we construct a stock price process such that two long positions in the same stock hedge each other. This puzzling phenomenon that cannot occur in arbitrage-free frictionless markets (or markets with proportional transaction costs) is used to show that no-arbitrage alone does not imply the existence of an equivalent separating measure if the probability space is infinite. Finally, we show that the model with a linear tax on capital gains can be written as a model with proportional transaction costs by introducing several fictitious securities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11579-018-0230-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-5605-5858</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-9679 |
ispartof | Mathematics and financial economics, 2019-06, Vol.13 (3), p.329-358 |
issn | 1862-9679 1862-9660 |
language | eng |
recordid | cdi_proquest_journals_2118141728 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Arbitrage Capital Capital gains Discrete time Economic Theory/Quantitative Economics/Mathematical Methods Economics Equivalence Fictitious Finance Insurance Local conditions Locality Macroeconomics/Monetary Economics//Financial Economics Management Markets Mathematics Mathematics and Statistics Property Quantitative Finance Statistics for Business Taxation Taxes Transaction costs |
title | How local in time is the no-arbitrage property under capital gains taxes? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20local%20in%20time%20is%20the%20no-arbitrage%20property%20under%20capital%20gains%20taxes?&rft.jtitle=Mathematics%20and%20financial%20economics&rft.au=K%C3%BChn,%20Christoph&rft.date=2019-06-01&rft.volume=13&rft.issue=3&rft.spage=329&rft.epage=358&rft.pages=329-358&rft.issn=1862-9679&rft.eissn=1862-9660&rft_id=info:doi/10.1007/s11579-018-0230-7&rft_dat=%3Cproquest_cross%3E2118141728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118141728&rft_id=info:pmid/&rfr_iscdi=true |