Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model
Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiativ...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2018-07, Vol.31 (14), p.5609-5628 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5628 |
---|---|
container_issue | 14 |
container_start_page | 5609 |
container_title | Journal of climate |
container_volume | 31 |
creator | Xiang, Baoqiang Zhao, Ming Ming, Yi Yu, Weidong Kang, Sarah M. |
description | Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation. |
doi_str_mv | 10.1175/jcli-d-17-0566.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2117982187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26496573</jstor_id><sourcerecordid>26496573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-788b1784f312f4021f377d0f78fc91b31a4068b7dcfef86c2df34aaac04811d53</originalsourceid><addsrcrecordid>eNpFkEFrGzEQhUVJoE7aey8FQc_rarTalXwMm9hxcXFI3UsvQtZKjowjbSVtwH8kv7cyLslpmJnvvRkeQl-ATAF4832vD67qK-AVadp2Ch_QBBpKKsIYvUATImasErxpPqKrlPaEAG0JmaDXLvgcVcrO7_DyeVA6JxwsflS9U9m9GDwPUZ-WzuP8ZPCvMJYSPV5rozx-MTGN6X26iWFwulh4vNx0f_BDSC670inf4ztv4u5YGOXTEGI-ea69wYv57Qp3B_esssE_Q28On9ClVYdkPv-v1-j3_G7T3Ver9WLZ3awqzQjkiguxBS6YrYFaRijYmvOeWC6snsG2BsVIK7a819ZY0Wra25oppTRhAqBv6mv07ew7xPB3NCnLfRijLyclLbHOBAXBC0XOlI4hpWisHGJ5Nh4lEHlKX_7oVkt5K4HLU_oSiuTrWbJPOcQ3nrZs1ja8rv8BwwaDUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117982187</pqid></control><display><type>article</type><title>Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Xiang, Baoqiang ; Zhao, Ming ; Ming, Yi ; Yu, Weidong ; Kang, Sarah M.</creator><creatorcontrib>Xiang, Baoqiang ; Zhao, Ming ; Ming, Yi ; Yu, Weidong ; Kang, Sarah M.</creatorcontrib><description>Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-17-0566.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric models ; Bias ; Climate ; Climate change ; Climate models ; Clouds ; Convergence zones ; Dependence ; Eddies ; Energy ; Energy budget ; Energy transfer ; Energy transport ; Equatorial regions ; Fluid dynamics ; Frameworks ; General circulation models ; Hadley circulation ; Heating ; Hypotheses ; Intertropical convergence zone ; Laboratories ; Migration ; Moist stability ; Northern Hemisphere ; Ocean circulation ; Ocean circulation anomalies ; Ocean currents ; Ocean models ; Oceanography ; Oceans ; Precipitation ; Radiation ; Radiative forcing ; Radiative heating ; Sea surface ; Sea surface temperature ; Short wave radiation ; Southern Hemisphere ; Studies ; Surface temperature ; Transport ; Tropical environments ; Uptake ; Water circulation</subject><ispartof>Journal of climate, 2018-07, Vol.31 (14), p.5609-5628</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-788b1784f312f4021f377d0f78fc91b31a4068b7dcfef86c2df34aaac04811d53</citedby><cites>FETCH-LOGICAL-c401t-788b1784f312f4021f377d0f78fc91b31a4068b7dcfef86c2df34aaac04811d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26496573$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26496573$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Yu, Weidong</creatorcontrib><creatorcontrib>Kang, Sarah M.</creatorcontrib><title>Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model</title><title>Journal of climate</title><description>Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Bias</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Clouds</subject><subject>Convergence zones</subject><subject>Dependence</subject><subject>Eddies</subject><subject>Energy</subject><subject>Energy budget</subject><subject>Energy transfer</subject><subject>Energy transport</subject><subject>Equatorial regions</subject><subject>Fluid dynamics</subject><subject>Frameworks</subject><subject>General circulation models</subject><subject>Hadley circulation</subject><subject>Heating</subject><subject>Hypotheses</subject><subject>Intertropical convergence zone</subject><subject>Laboratories</subject><subject>Migration</subject><subject>Moist stability</subject><subject>Northern Hemisphere</subject><subject>Ocean circulation</subject><subject>Ocean circulation anomalies</subject><subject>Ocean currents</subject><subject>Ocean models</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Radiative heating</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Short wave radiation</subject><subject>Southern Hemisphere</subject><subject>Studies</subject><subject>Surface temperature</subject><subject>Transport</subject><subject>Tropical environments</subject><subject>Uptake</subject><subject>Water circulation</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkEFrGzEQhUVJoE7aey8FQc_rarTalXwMm9hxcXFI3UsvQtZKjowjbSVtwH8kv7cyLslpmJnvvRkeQl-ATAF4832vD67qK-AVadp2Ch_QBBpKKsIYvUATImasErxpPqKrlPaEAG0JmaDXLvgcVcrO7_DyeVA6JxwsflS9U9m9GDwPUZ-WzuP8ZPCvMJYSPV5rozx-MTGN6X26iWFwulh4vNx0f_BDSC670inf4ztv4u5YGOXTEGI-ea69wYv57Qp3B_esssE_Q28On9ClVYdkPv-v1-j3_G7T3Ver9WLZ3awqzQjkiguxBS6YrYFaRijYmvOeWC6snsG2BsVIK7a819ZY0Wra25oppTRhAqBv6mv07ew7xPB3NCnLfRijLyclLbHOBAXBC0XOlI4hpWisHGJ5Nh4lEHlKX_7oVkt5K4HLU_oSiuTrWbJPOcQ3nrZs1ja8rv8BwwaDUw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Xiang, Baoqiang</creator><creator>Zhao, Ming</creator><creator>Ming, Yi</creator><creator>Yu, Weidong</creator><creator>Kang, Sarah M.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180701</creationdate><title>Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model</title><author>Xiang, Baoqiang ; Zhao, Ming ; Ming, Yi ; Yu, Weidong ; Kang, Sarah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-788b1784f312f4021f377d0f78fc91b31a4068b7dcfef86c2df34aaac04811d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Bias</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Clouds</topic><topic>Convergence zones</topic><topic>Dependence</topic><topic>Eddies</topic><topic>Energy</topic><topic>Energy budget</topic><topic>Energy transfer</topic><topic>Energy transport</topic><topic>Equatorial regions</topic><topic>Fluid dynamics</topic><topic>Frameworks</topic><topic>General circulation models</topic><topic>Hadley circulation</topic><topic>Heating</topic><topic>Hypotheses</topic><topic>Intertropical convergence zone</topic><topic>Laboratories</topic><topic>Migration</topic><topic>Moist stability</topic><topic>Northern Hemisphere</topic><topic>Ocean circulation</topic><topic>Ocean circulation anomalies</topic><topic>Ocean currents</topic><topic>Ocean models</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Radiative heating</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Short wave radiation</topic><topic>Southern Hemisphere</topic><topic>Studies</topic><topic>Surface temperature</topic><topic>Transport</topic><topic>Tropical environments</topic><topic>Uptake</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Yu, Weidong</creatorcontrib><creatorcontrib>Kang, Sarah M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Baoqiang</au><au>Zhao, Ming</au><au>Ming, Yi</au><au>Yu, Weidong</au><au>Kang, Sarah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model</atitle><jtitle>Journal of climate</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>31</volume><issue>14</issue><spage>5609</spage><epage>5628</epage><pages>5609-5628</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-17-0566.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2018-07, Vol.31 (14), p.5609-5628 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2117982187 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; JSTOR |
subjects | Atmosphere Atmospheric models Bias Climate Climate change Climate models Clouds Convergence zones Dependence Eddies Energy Energy budget Energy transfer Energy transport Equatorial regions Fluid dynamics Frameworks General circulation models Hadley circulation Heating Hypotheses Intertropical convergence zone Laboratories Migration Moist stability Northern Hemisphere Ocean circulation Ocean circulation anomalies Ocean currents Ocean models Oceanography Oceans Precipitation Radiation Radiative forcing Radiative heating Sea surface Sea surface temperature Short wave radiation Southern Hemisphere Studies Surface temperature Transport Tropical environments Uptake Water circulation |
title | Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20Impacts%20of%20Radiative%20Forcing%20in%20the%20Southern%20Ocean%20versus%20Southern%20Tropics%20on%20ITCZ%20Position%20and%20Energy%20Transport%20in%20One%20GFDL%20Climate%20Model&rft.jtitle=Journal%20of%20climate&rft.au=Xiang,%20Baoqiang&rft.date=2018-07-01&rft.volume=31&rft.issue=14&rft.spage=5609&rft.epage=5628&rft.pages=5609-5628&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-17-0566.1&rft_dat=%3Cjstor_proqu%3E26496573%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117982187&rft_id=info:pmid/&rft_jstor_id=26496573&rfr_iscdi=true |