The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation
This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, incl...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2018-07, Vol.31 (13), p.5165-5188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5188 |
---|---|
container_issue | 13 |
container_start_page | 5165 |
container_title | Journal of climate |
container_volume | 31 |
creator | Wang, He Legg, Sonya Hallberg, Robert |
description | This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate. |
doi_str_mv | 10.1175/JCLI-D-17-0629.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2117977876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26496549</jstor_id><sourcerecordid>26496549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-628e083b8eef2a8efdc6c878cd5e6842f81ea1c510c7a7e988404556d8624de93</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjevZg08bzYdvu1R7KIYlA84Lmp3VlZgrvYFgz_vd1gOM0k7_feTB5Ct5SMKFXi4aWcz7JJRlVGJCtG9AwNqGAkI5yzczQguuCZVkJcoqsQ1oRQJgkZoMNyBfixrsFF3NV47F1sHJ56CKtfG8HjdxvTdgi4a_Fb5-MKj-PGtj1Vdu0--Zqk2LbCMSWdtFfwTZUUu8GLPfi4823TfuGy8W63sb3nGl3UdhPg5n8O0cf0cVk-Z_PF06wczzPHijxmkmkgOv_UADWzGurKSaeVdpUAqTmrNQVLnaDEKaug0JoTLoSstGS8giIfovtj7tZ3PzsI0ay79E06aVhqrlBKK5kocqSc70LwUJutb76tPxhKTF-w6Qs2E0OV6Qs2NFnujpZ1iJ0_8UzyQgpe5H9-_3mI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117977876</pqid></control><display><type>article</type><title>The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, He ; Legg, Sonya ; Hallberg, Robert</creator><creatorcontrib>Wang, He ; Legg, Sonya ; Hallberg, Robert</creatorcontrib><description>This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-17-0629.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atlantic Meridional Overturning Circulation (AMOC) ; Boundary layer ; Climate ; Climate models ; Climatology ; Computer simulation ; Control simulation ; Convection ; Deep water ; Deep water circulation ; Experiments ; Fresh water ; Freshwater ; Global climate ; Inland water environment ; Marginal seas ; Numerical experiments ; Ocean circulation ; Ocean currents ; Salinity ; Sensitivity ; Surface water ; Water circulation</subject><ispartof>Journal of climate, 2018-07, Vol.31 (13), p.5165-5188</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-628e083b8eef2a8efdc6c878cd5e6842f81ea1c510c7a7e988404556d8624de93</citedby><cites>FETCH-LOGICAL-c293t-628e083b8eef2a8efdc6c878cd5e6842f81ea1c510c7a7e988404556d8624de93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26496549$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26496549$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Legg, Sonya</creatorcontrib><creatorcontrib>Hallberg, Robert</creatorcontrib><title>The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation</title><title>Journal of climate</title><description>This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.</description><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Boundary layer</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Control simulation</subject><subject>Convection</subject><subject>Deep water</subject><subject>Deep water circulation</subject><subject>Experiments</subject><subject>Fresh water</subject><subject>Freshwater</subject><subject>Global climate</subject><subject>Inland water environment</subject><subject>Marginal seas</subject><subject>Numerical experiments</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Salinity</subject><subject>Sensitivity</subject><subject>Surface water</subject><subject>Water circulation</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1PAjEQxRujiYjevZg08bzYdvu1R7KIYlA84Lmp3VlZgrvYFgz_vd1gOM0k7_feTB5Ct5SMKFXi4aWcz7JJRlVGJCtG9AwNqGAkI5yzczQguuCZVkJcoqsQ1oRQJgkZoMNyBfixrsFF3NV47F1sHJ56CKtfG8HjdxvTdgi4a_Fb5-MKj-PGtj1Vdu0--Zqk2LbCMSWdtFfwTZUUu8GLPfi4823TfuGy8W63sb3nGl3UdhPg5n8O0cf0cVk-Z_PF06wczzPHijxmkmkgOv_UADWzGurKSaeVdpUAqTmrNQVLnaDEKaug0JoTLoSstGS8giIfovtj7tZ3PzsI0ay79E06aVhqrlBKK5kocqSc70LwUJutb76tPxhKTF-w6Qs2E0OV6Qs2NFnujpZ1iJ0_8UzyQgpe5H9-_3mI</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wang, He</creator><creator>Legg, Sonya</creator><creator>Hallberg, Robert</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180701</creationdate><title>The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation</title><author>Wang, He ; Legg, Sonya ; Hallberg, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-628e083b8eef2a8efdc6c878cd5e6842f81ea1c510c7a7e988404556d8624de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Boundary layer</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Control simulation</topic><topic>Convection</topic><topic>Deep water</topic><topic>Deep water circulation</topic><topic>Experiments</topic><topic>Fresh water</topic><topic>Freshwater</topic><topic>Global climate</topic><topic>Inland water environment</topic><topic>Marginal seas</topic><topic>Numerical experiments</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Salinity</topic><topic>Sensitivity</topic><topic>Surface water</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Legg, Sonya</creatorcontrib><creatorcontrib>Hallberg, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, He</au><au>Legg, Sonya</au><au>Hallberg, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation</atitle><jtitle>Journal of climate</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>31</volume><issue>13</issue><spage>5165</spage><epage>5188</epage><pages>5165-5188</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-17-0629.1</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2018-07, Vol.31 (13), p.5165-5188 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2117977876 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atlantic Meridional Overturning Circulation (AMOC) Boundary layer Climate Climate models Climatology Computer simulation Control simulation Convection Deep water Deep water circulation Experiments Fresh water Freshwater Global climate Inland water environment Marginal seas Numerical experiments Ocean circulation Ocean currents Salinity Sensitivity Surface water Water circulation |
title | The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T05%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Arctic%20Freshwater%20Pathways%20on%20North%20Atlantic%20Convection%20and%20the%20Atlantic%20Meridional%20Overturning%20Circulation&rft.jtitle=Journal%20of%20climate&rft.au=Wang,%20He&rft.date=2018-07-01&rft.volume=31&rft.issue=13&rft.spage=5165&rft.epage=5188&rft.pages=5165-5188&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-17-0629.1&rft_dat=%3Cjstor_proqu%3E26496549%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117977876&rft_id=info:pmid/&rft_jstor_id=26496549&rfr_iscdi=true |