Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific

Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis (P TCG) from the developing (TCd) and nondeveloping (TCn) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2018-06, Vol.31 (12), p.4949-4962
Hauptverfasser: Chen, Jau-Ming, Wu, Ching-Hsuan, Chung, Pei-Hsuan, Sui, Chung-Hsiung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4962
container_issue 12
container_start_page 4949
container_title Journal of climate
container_volume 31
creator Chen, Jau-Ming
Wu, Ching-Hsuan
Chung, Pei-Hsuan
Sui, Chung-Hsiung
description Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis (P TCG) from the developing (TCd) and nondeveloping (TCn) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TCd is defined as P TCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological P TCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [∼31 (100 days)−1]. However, P TCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive)MJO, and El Niño (La Niña) years. P TCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased P TCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased P TCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate P TCG, when compared with vertical wind shear and 700-hPa relative humidity.
doi_str_mv 10.1175/jcli-d-17-0601.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2117971992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26496191</jstor_id><sourcerecordid>26496191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b65c50a9f0066c8b01a1733b7a6a831decb0625d02e344d78b3412f71abd0ca83</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwsyBZYk65cxI7GVGBUlRRhiJGy3Ec4SrYxU6HbrwDb8iT4KqI6XS67z_dfYRcIkwQRXmz1r3N2gxFBhxwgkdkhCWDDIqCHZMRVHWRVaIsT8lZjGsAZBxgRNzcdf3WOG2o7-jcDUFFo6J3qv_5-k69Ccq5rerpMmrb92qw3kXqHV0Fv7E6DaY73Xtn6Mw4E22k1tHh3dA3E1PY0Wcfhnf6orTtrD4nJ53qo7n4q2Py-nC_mj5mi-VsPr1dZLoAHLKGl7oEVXcAnOuqAVQo8rwRiqsqx9boBjgrW2AmL4pWVE1eIOsEqqYFnZAxuT7s3QT_uU2XyLXfhvRUlCzpqgXWNUsUHCgdfIzBdHIT7IcKO4kg91bl03Qxl3cShdxblZgiV4fIOg4-_POMFzXHGvNf74J24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117971992</pqid></control><display><type>article</type><title>Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chen, Jau-Ming ; Wu, Ching-Hsuan ; Chung, Pei-Hsuan ; Sui, Chung-Hsiung</creator><creatorcontrib>Chen, Jau-Ming ; Wu, Ching-Hsuan ; Chung, Pei-Hsuan ; Sui, Chung-Hsiung</creatorcontrib><description>Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis (P TCG) from the developing (TCd) and nondeveloping (TCn) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TCd is defined as P TCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological P TCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [∼31 (100 days)−1]. However, P TCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive)MJO, and El Niño (La Niña) years. P TCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased P TCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased P TCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate P TCG, when compared with vertical wind shear and 700-hPa relative humidity.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-17-0601.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric sciences ; Basins ; Climate ; Climatological means ; Climatology ; Cyclones ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Hurricanes ; Interannual oscillation ; La Nina ; Life span ; Madden-Julian oscillation ; Ocean currents ; Oscillations ; Planetary waves ; Productivity ; Relative humidity ; Relative vorticity ; Rossby waves ; Shear lines ; Southern Oscillation ; Tropical climate ; Tropical cyclones ; Tropical disturbances ; Vertical wind shear ; Vorticity ; Warm seasons ; Wind shear</subject><ispartof>Journal of climate, 2018-06, Vol.31 (12), p.4949-4962</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b65c50a9f0066c8b01a1733b7a6a831decb0625d02e344d78b3412f71abd0ca83</citedby><cites>FETCH-LOGICAL-c401t-b65c50a9f0066c8b01a1733b7a6a831decb0625d02e344d78b3412f71abd0ca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26496191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26496191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Chen, Jau-Ming</creatorcontrib><creatorcontrib>Wu, Ching-Hsuan</creatorcontrib><creatorcontrib>Chung, Pei-Hsuan</creatorcontrib><creatorcontrib>Sui, Chung-Hsiung</creatorcontrib><title>Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific</title><title>Journal of climate</title><description>Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis (P TCG) from the developing (TCd) and nondeveloping (TCn) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TCd is defined as P TCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological P TCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [∼31 (100 days)−1]. However, P TCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive)MJO, and El Niño (La Niña) years. P TCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased P TCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased P TCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate P TCG, when compared with vertical wind shear and 700-hPa relative humidity.</description><subject>Atmospheric sciences</subject><subject>Basins</subject><subject>Climate</subject><subject>Climatological means</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Hurricanes</subject><subject>Interannual oscillation</subject><subject>La Nina</subject><subject>Life span</subject><subject>Madden-Julian oscillation</subject><subject>Ocean currents</subject><subject>Oscillations</subject><subject>Planetary waves</subject><subject>Productivity</subject><subject>Relative humidity</subject><subject>Relative vorticity</subject><subject>Rossby waves</subject><subject>Shear lines</subject><subject>Southern Oscillation</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Tropical disturbances</subject><subject>Vertical wind shear</subject><subject>Vorticity</subject><subject>Warm seasons</subject><subject>Wind shear</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kLFOwzAQhi0EEqWwsyBZYk65cxI7GVGBUlRRhiJGy3Ec4SrYxU6HbrwDb8iT4KqI6XS67z_dfYRcIkwQRXmz1r3N2gxFBhxwgkdkhCWDDIqCHZMRVHWRVaIsT8lZjGsAZBxgRNzcdf3WOG2o7-jcDUFFo6J3qv_5-k69Ccq5rerpMmrb92qw3kXqHV0Fv7E6DaY73Xtn6Mw4E22k1tHh3dA3E1PY0Wcfhnf6orTtrD4nJ53qo7n4q2Py-nC_mj5mi-VsPr1dZLoAHLKGl7oEVXcAnOuqAVQo8rwRiqsqx9boBjgrW2AmL4pWVE1eIOsEqqYFnZAxuT7s3QT_uU2XyLXfhvRUlCzpqgXWNUsUHCgdfIzBdHIT7IcKO4kg91bl03Qxl3cShdxblZgiV4fIOg4-_POMFzXHGvNf74J24A</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Chen, Jau-Ming</creator><creator>Wu, Ching-Hsuan</creator><creator>Chung, Pei-Hsuan</creator><creator>Sui, Chung-Hsiung</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180601</creationdate><title>Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific</title><author>Chen, Jau-Ming ; Wu, Ching-Hsuan ; Chung, Pei-Hsuan ; Sui, Chung-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b65c50a9f0066c8b01a1733b7a6a831decb0625d02e344d78b3412f71abd0ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric sciences</topic><topic>Basins</topic><topic>Climate</topic><topic>Climatological means</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Hurricanes</topic><topic>Interannual oscillation</topic><topic>La Nina</topic><topic>Life span</topic><topic>Madden-Julian oscillation</topic><topic>Ocean currents</topic><topic>Oscillations</topic><topic>Planetary waves</topic><topic>Productivity</topic><topic>Relative humidity</topic><topic>Relative vorticity</topic><topic>Rossby waves</topic><topic>Shear lines</topic><topic>Southern Oscillation</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Tropical disturbances</topic><topic>Vertical wind shear</topic><topic>Vorticity</topic><topic>Warm seasons</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jau-Ming</creatorcontrib><creatorcontrib>Wu, Ching-Hsuan</creatorcontrib><creatorcontrib>Chung, Pei-Hsuan</creatorcontrib><creatorcontrib>Sui, Chung-Hsiung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jau-Ming</au><au>Wu, Ching-Hsuan</au><au>Chung, Pei-Hsuan</au><au>Sui, Chung-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific</atitle><jtitle>Journal of climate</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>31</volume><issue>12</issue><spage>4949</spage><epage>4962</epage><pages>4949-4962</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis (P TCG) from the developing (TCd) and nondeveloping (TCn) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TCd is defined as P TCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological P TCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [∼31 (100 days)−1]. However, P TCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive)MJO, and El Niño (La Niña) years. P TCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased P TCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased P TCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate P TCG, when compared with vertical wind shear and 700-hPa relative humidity.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-17-0601.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2018-06, Vol.31 (12), p.4949-4962
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2117971992
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects Atmospheric sciences
Basins
Climate
Climatological means
Climatology
Cyclones
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Hurricanes
Interannual oscillation
La Nina
Life span
Madden-Julian oscillation
Ocean currents
Oscillations
Planetary waves
Productivity
Relative humidity
Relative vorticity
Rossby waves
Shear lines
Southern Oscillation
Tropical climate
Tropical cyclones
Tropical disturbances
Vertical wind shear
Vorticity
Warm seasons
Wind shear
title Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Intraseasonal%E2%80%93Interannual%20Oscillations%20on%20Tropical%20Cyclone%20Genesis%20in%20the%20Western%20North%20Pacific&rft.jtitle=Journal%20of%20climate&rft.au=Chen,%20Jau-Ming&rft.date=2018-06-01&rft.volume=31&rft.issue=12&rft.spage=4949&rft.epage=4962&rft.pages=4949-4962&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-17-0601.1&rft_dat=%3Cjstor_proqu%3E26496191%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117971992&rft_id=info:pmid/&rft_jstor_id=26496191&rfr_iscdi=true