Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall
This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to ex...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2018-05, Vol.31 (10), p.3943-3958 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3958 |
---|---|
container_issue | 10 |
container_start_page | 3943 |
container_title | Journal of climate |
container_volume | 31 |
creator | Srinivas, G. Chowdary, Jasti S. Kosaka, Yu Gnanaseelan, C. Parekh, Anant Prasad, K. V. S. R. |
description | This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale. |
doi_str_mv | 10.1175/jcli-d-17-0408.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2117971989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26496135</jstor_id><sourcerecordid>26496135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a9eb9c1c081e5abd972bbea6045fa1477a909827a86b032c49cc16b33b6250143</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72boSC6473pknTLGV8dRhRfKxDmkmxZSYZk3bhzv_gP_SXmGHE1eEcvnMvHELOEKaIgl_2ZtXlyxxFDgyqKe6RCXIKyTG6TyZQSZZXgvNDchRjD4C0BJiQee3a1WidsZlvs-HdZk_adG1nfr6-53qjXfLDYIPLvMtqt-xS8jKu1zZkD95Fn9Jn3blWr1Yn5CBJtKd_ekzebm9eZ_f54vGunl0tcsNYNeRa2kYaNFCh5bpZSkGbxuoSGG81MiG0BFlRoauygYIaJo3BsimKpqQckBXH5GJ3dxP8x2jjoHo_BpdeKpqmkAJlJRMFO8oEH2OwrdqEbq3Dp0JQ28XUfLao1bVCobaLKUyV812lj4MP_zwtmSyx4MUveNFolg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117971989</pqid></control><display><type>article</type><title>Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Srinivas, G. ; Chowdary, Jasti S. ; Kosaka, Yu ; Gnanaseelan, C. ; Parekh, Anant ; Prasad, K. V. S. R.</creator><creatorcontrib>Srinivas, G. ; Chowdary, Jasti S. ; Kosaka, Yu ; Gnanaseelan, C. ; Parekh, Anant ; Prasad, K. V. S. R.</creatorcontrib><description>This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-17-0408.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Anticyclones ; Atmospheric circulation ; Atmospheric circulation anomalies ; Climate models ; Climatology ; Cold ; Convection ; Correlation analysis ; Cyclones ; Easterlies ; Empirical analysis ; Function analysis ; General circulation models ; Influence ; Levels ; Marine transportation ; Meteorology ; Monsoon rainfall ; Monsoons ; Ocean warming ; Oceanography ; Orthogonal functions ; Planetary waves ; Precipitation ; Rain ; Rainfall ; Relative vorticity ; Rossby waves ; Sea surface ; Sea surface temperature ; Summer ; Summer monsoon ; Surface temperature ; Tropical climate ; Variability ; Vorticity ; Wave propagation ; Wind</subject><ispartof>Journal of climate, 2018-05, Vol.31 (10), p.3943-3958</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a9eb9c1c081e5abd972bbea6045fa1477a909827a86b032c49cc16b33b6250143</citedby><cites>FETCH-LOGICAL-c448t-a9eb9c1c081e5abd972bbea6045fa1477a909827a86b032c49cc16b33b6250143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26496135$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26496135$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Srinivas, G.</creatorcontrib><creatorcontrib>Chowdary, Jasti S.</creatorcontrib><creatorcontrib>Kosaka, Yu</creatorcontrib><creatorcontrib>Gnanaseelan, C.</creatorcontrib><creatorcontrib>Parekh, Anant</creatorcontrib><creatorcontrib>Prasad, K. V. S. R.</creatorcontrib><title>Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall</title><title>Journal of climate</title><description>This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.</description><subject>Anomalies</subject><subject>Anticyclones</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation anomalies</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Cold</subject><subject>Convection</subject><subject>Correlation analysis</subject><subject>Cyclones</subject><subject>Easterlies</subject><subject>Empirical analysis</subject><subject>Function analysis</subject><subject>General circulation models</subject><subject>Influence</subject><subject>Levels</subject><subject>Marine transportation</subject><subject>Meteorology</subject><subject>Monsoon rainfall</subject><subject>Monsoons</subject><subject>Ocean warming</subject><subject>Oceanography</subject><subject>Orthogonal functions</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Relative vorticity</subject><subject>Rossby waves</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Surface temperature</subject><subject>Tropical climate</subject><subject>Variability</subject><subject>Vorticity</subject><subject>Wave propagation</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLxDAUhYMoOD72boSC6473pknTLGV8dRhRfKxDmkmxZSYZk3bhzv_gP_SXmGHE1eEcvnMvHELOEKaIgl_2ZtXlyxxFDgyqKe6RCXIKyTG6TyZQSZZXgvNDchRjD4C0BJiQee3a1WidsZlvs-HdZk_adG1nfr6-53qjXfLDYIPLvMtqt-xS8jKu1zZkD95Fn9Jn3blWr1Yn5CBJtKd_ekzebm9eZ_f54vGunl0tcsNYNeRa2kYaNFCh5bpZSkGbxuoSGG81MiG0BFlRoauygYIaJo3BsimKpqQckBXH5GJ3dxP8x2jjoHo_BpdeKpqmkAJlJRMFO8oEH2OwrdqEbq3Dp0JQ28XUfLao1bVCobaLKUyV812lj4MP_zwtmSyx4MUveNFolg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Srinivas, G.</creator><creator>Chowdary, Jasti S.</creator><creator>Kosaka, Yu</creator><creator>Gnanaseelan, C.</creator><creator>Parekh, Anant</creator><creator>Prasad, K. V. S. R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180501</creationdate><title>Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall</title><author>Srinivas, G. ; Chowdary, Jasti S. ; Kosaka, Yu ; Gnanaseelan, C. ; Parekh, Anant ; Prasad, K. V. S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a9eb9c1c081e5abd972bbea6045fa1477a909827a86b032c49cc16b33b6250143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Anticyclones</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation anomalies</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Cold</topic><topic>Convection</topic><topic>Correlation analysis</topic><topic>Cyclones</topic><topic>Easterlies</topic><topic>Empirical analysis</topic><topic>Function analysis</topic><topic>General circulation models</topic><topic>Influence</topic><topic>Levels</topic><topic>Marine transportation</topic><topic>Meteorology</topic><topic>Monsoon rainfall</topic><topic>Monsoons</topic><topic>Ocean warming</topic><topic>Oceanography</topic><topic>Orthogonal functions</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Relative vorticity</topic><topic>Rossby waves</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Surface temperature</topic><topic>Tropical climate</topic><topic>Variability</topic><topic>Vorticity</topic><topic>Wave propagation</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivas, G.</creatorcontrib><creatorcontrib>Chowdary, Jasti S.</creatorcontrib><creatorcontrib>Kosaka, Yu</creatorcontrib><creatorcontrib>Gnanaseelan, C.</creatorcontrib><creatorcontrib>Parekh, Anant</creatorcontrib><creatorcontrib>Prasad, K. V. S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivas, G.</au><au>Chowdary, Jasti S.</au><au>Kosaka, Yu</au><au>Gnanaseelan, C.</au><au>Parekh, Anant</au><au>Prasad, K. V. S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall</atitle><jtitle>Journal of climate</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>31</volume><issue>10</issue><spage>3943</spage><epage>3958</epage><pages>3943-3958</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-17-0408.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2018-05, Vol.31 (10), p.3943-3958 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2117971989 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Anomalies Anticyclones Atmospheric circulation Atmospheric circulation anomalies Climate models Climatology Cold Convection Correlation analysis Cyclones Easterlies Empirical analysis Function analysis General circulation models Influence Levels Marine transportation Meteorology Monsoon rainfall Monsoons Ocean warming Oceanography Orthogonal functions Planetary waves Precipitation Rain Rainfall Relative vorticity Rossby waves Sea surface Sea surface temperature Summer Summer monsoon Surface temperature Tropical climate Variability Vorticity Wave propagation Wind |
title | Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Pacific%E2%80%93Japan%20Pattern%20on%20Indian%20Summer%20Monsoon%20Rainfall&rft.jtitle=Journal%20of%20climate&rft.au=Srinivas,%20G.&rft.date=2018-05-01&rft.volume=31&rft.issue=10&rft.spage=3943&rft.epage=3958&rft.pages=3943-3958&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-17-0408.1&rft_dat=%3Cjstor_proqu%3E26496135%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117971989&rft_id=info:pmid/&rft_jstor_id=26496135&rfr_iscdi=true |