Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx

Time series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2018-04, Vol.35 (4), p.821-836
Hauptverfasser: Verlinden, Kathryn L., de Szoeke, Simon P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 4
container_start_page 821
container_title Journal of atmospheric and oceanic technology
container_volume 35
creator Verlinden, Kathryn L.
de Szoeke, Simon P.
description Time series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific Ocean (20°S) during the second leg of the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). Incorporating additional constraints results in simulations of physically consistent radiative profiles throughout the atmosphere, especially within the cloud, where they are difficult to observe precisely. Simulated surface radiative fluxes are compared with those observed on the ship and by aircraft. Due to the strong Rayleigh scattering of drizzle drops compared to cloud droplets that absorb, emit, and scatter natural radiation, cloud radar reflectivity overestimates cloud liquid water content (LWC). As a result, clouds are optically too thick and transmission ratios are too low in simulations using radar LWC. Imposing a triangular (increasing linearly with height from zero at cloud base) LWC profile in agreement with microwave liquid water path (LWP) improves the simulation of the transmission ratio. Constraining the corresponding microphysical cloud effective radius to that retrieved from optical depth, LWP, and cloud thickness results in additional improvements to the simulations. Time series, averages, and composite diurnal cycles of radiative fluxes, heating rates, and cloud radiative forcing are presented.
doi_str_mv 10.1175/JTECH-D-17-0169.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117968494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117968494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d5ce80218a4ae1de455c12e177725ea5756210894eb7d58c53472c9839130ba73</originalsourceid><addsrcrecordid>eNotkMtOAjEUhhujiYg-gLsmros9nel0Zmm4eAkJhkG3TekUGDJQ7MXg21vE1TmL7_znz4fQPdABgOCPb4vx8IWMCAhCoagGcIF6wBklNGfFJepRkVWEcsGu0Y33W0opZFD0kKzbXexUaPdrPFdNm7ZvgyddPBqPw8bZuN7g2sawMcoH4_b4Xel21WpcB6eC1TGdR4-HnY2Nx010p6TP2fBpWpP5-HiLrlaq8-buf_bRx2S8SFWns-fXBBGdagTScG1KyqBUuTLQmJxzDcyAEIJxo7jgBQNaVrlZioaXmme5YLoqswoyulQi66OHc-7B2a9ofJBbG90-vZQsCaqKMq_yRMGZ0s5678xKHly7U-5HApUnj_LPoxxJEPLkUUL2CxR6ZfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117968494</pqid></control><display><type>article</type><title>Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Verlinden, Kathryn L. ; de Szoeke, Simon P.</creator><creatorcontrib>Verlinden, Kathryn L. ; de Szoeke, Simon P.</creatorcontrib><description>Time series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific Ocean (20°S) during the second leg of the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). Incorporating additional constraints results in simulations of physically consistent radiative profiles throughout the atmosphere, especially within the cloud, where they are difficult to observe precisely. Simulated surface radiative fluxes are compared with those observed on the ship and by aircraft. Due to the strong Rayleigh scattering of drizzle drops compared to cloud droplets that absorb, emit, and scatter natural radiation, cloud radar reflectivity overestimates cloud liquid water content (LWC). As a result, clouds are optically too thick and transmission ratios are too low in simulations using radar LWC. Imposing a triangular (increasing linearly with height from zero at cloud base) LWC profile in agreement with microwave liquid water path (LWP) improves the simulation of the transmission ratio. Constraining the corresponding microphysical cloud effective radius to that retrieved from optical depth, LWP, and cloud thickness results in additional improvements to the simulations. Time series, averages, and composite diurnal cycles of radiative fluxes, heating rates, and cloud radiative forcing are presented.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-17-0169.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric sciences ; Cloud droplets ; Cloud thickness ; Clouds ; Computer simulation ; Constraint modelling ; Cooling ; Drizzle ; Experiments ; Fluxes ; Heating ; Meteorological satellites ; Moisture content ; Monsoon clouds ; Monsoons ; Oceans ; Optical analysis ; Profiles ; Radar ; Radar reflectivity ; Radiation ; Radiative forcing ; Radiative transfer ; Ratios ; Rayleigh scattering ; Reflectance ; Remote sensing ; Ships ; Simulation ; Stratocumulus clouds ; Temperature ; Time series ; Tropical climate ; Water ; Water content</subject><ispartof>Journal of atmospheric and oceanic technology, 2018-04, Vol.35 (4), p.821-836</ispartof><rights>Copyright American Meteorological Society Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d5ce80218a4ae1de455c12e177725ea5756210894eb7d58c53472c9839130ba73</citedby><cites>FETCH-LOGICAL-c316t-d5ce80218a4ae1de455c12e177725ea5756210894eb7d58c53472c9839130ba73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Verlinden, Kathryn L.</creatorcontrib><creatorcontrib>de Szoeke, Simon P.</creatorcontrib><title>Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx</title><title>Journal of atmospheric and oceanic technology</title><description>Time series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific Ocean (20°S) during the second leg of the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). Incorporating additional constraints results in simulations of physically consistent radiative profiles throughout the atmosphere, especially within the cloud, where they are difficult to observe precisely. Simulated surface radiative fluxes are compared with those observed on the ship and by aircraft. Due to the strong Rayleigh scattering of drizzle drops compared to cloud droplets that absorb, emit, and scatter natural radiation, cloud radar reflectivity overestimates cloud liquid water content (LWC). As a result, clouds are optically too thick and transmission ratios are too low in simulations using radar LWC. Imposing a triangular (increasing linearly with height from zero at cloud base) LWC profile in agreement with microwave liquid water path (LWP) improves the simulation of the transmission ratio. Constraining the corresponding microphysical cloud effective radius to that retrieved from optical depth, LWP, and cloud thickness results in additional improvements to the simulations. Time series, averages, and composite diurnal cycles of radiative fluxes, heating rates, and cloud radiative forcing are presented.</description><subject>Atmosphere</subject><subject>Atmospheric sciences</subject><subject>Cloud droplets</subject><subject>Cloud thickness</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Cooling</subject><subject>Drizzle</subject><subject>Experiments</subject><subject>Fluxes</subject><subject>Heating</subject><subject>Meteorological satellites</subject><subject>Moisture content</subject><subject>Monsoon clouds</subject><subject>Monsoons</subject><subject>Oceans</subject><subject>Optical analysis</subject><subject>Profiles</subject><subject>Radar</subject><subject>Radar reflectivity</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Radiative transfer</subject><subject>Ratios</subject><subject>Rayleigh scattering</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Ships</subject><subject>Simulation</subject><subject>Stratocumulus clouds</subject><subject>Temperature</subject><subject>Time series</subject><subject>Tropical climate</subject><subject>Water</subject><subject>Water content</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtOAjEUhhujiYg-gLsmros9nel0Zmm4eAkJhkG3TekUGDJQ7MXg21vE1TmL7_znz4fQPdABgOCPb4vx8IWMCAhCoagGcIF6wBklNGfFJepRkVWEcsGu0Y33W0opZFD0kKzbXexUaPdrPFdNm7ZvgyddPBqPw8bZuN7g2sawMcoH4_b4Xel21WpcB6eC1TGdR4-HnY2Nx010p6TP2fBpWpP5-HiLrlaq8-buf_bRx2S8SFWns-fXBBGdagTScG1KyqBUuTLQmJxzDcyAEIJxo7jgBQNaVrlZioaXmme5YLoqswoyulQi66OHc-7B2a9ofJBbG90-vZQsCaqKMq_yRMGZ0s5678xKHly7U-5HApUnj_LPoxxJEPLkUUL2CxR6ZfU</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Verlinden, Kathryn L.</creator><creator>de Szoeke, Simon P.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201804</creationdate><title>Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx</title><author>Verlinden, Kathryn L. ; de Szoeke, Simon P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d5ce80218a4ae1de455c12e177725ea5756210894eb7d58c53472c9839130ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmosphere</topic><topic>Atmospheric sciences</topic><topic>Cloud droplets</topic><topic>Cloud thickness</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Cooling</topic><topic>Drizzle</topic><topic>Experiments</topic><topic>Fluxes</topic><topic>Heating</topic><topic>Meteorological satellites</topic><topic>Moisture content</topic><topic>Monsoon clouds</topic><topic>Monsoons</topic><topic>Oceans</topic><topic>Optical analysis</topic><topic>Profiles</topic><topic>Radar</topic><topic>Radar reflectivity</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Radiative transfer</topic><topic>Ratios</topic><topic>Rayleigh scattering</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Ships</topic><topic>Simulation</topic><topic>Stratocumulus clouds</topic><topic>Temperature</topic><topic>Time series</topic><topic>Tropical climate</topic><topic>Water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verlinden, Kathryn L.</creatorcontrib><creatorcontrib>de Szoeke, Simon P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verlinden, Kathryn L.</au><au>de Szoeke, Simon P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2018-04</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><spage>821</spage><epage>836</epage><pages>821-836</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Time series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific Ocean (20°S) during the second leg of the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). Incorporating additional constraints results in simulations of physically consistent radiative profiles throughout the atmosphere, especially within the cloud, where they are difficult to observe precisely. Simulated surface radiative fluxes are compared with those observed on the ship and by aircraft. Due to the strong Rayleigh scattering of drizzle drops compared to cloud droplets that absorb, emit, and scatter natural radiation, cloud radar reflectivity overestimates cloud liquid water content (LWC). As a result, clouds are optically too thick and transmission ratios are too low in simulations using radar LWC. Imposing a triangular (increasing linearly with height from zero at cloud base) LWC profile in agreement with microwave liquid water path (LWP) improves the simulation of the transmission ratio. Constraining the corresponding microphysical cloud effective radius to that retrieved from optical depth, LWP, and cloud thickness results in additional improvements to the simulations. Time series, averages, and composite diurnal cycles of radiative fluxes, heating rates, and cloud radiative forcing are presented.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-17-0169.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2018-04, Vol.35 (4), p.821-836
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_journals_2117968494
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric sciences
Cloud droplets
Cloud thickness
Clouds
Computer simulation
Constraint modelling
Cooling
Drizzle
Experiments
Fluxes
Heating
Meteorological satellites
Moisture content
Monsoon clouds
Monsoons
Oceans
Optical analysis
Profiles
Radar
Radar reflectivity
Radiation
Radiative forcing
Radiative transfer
Ratios
Rayleigh scattering
Reflectance
Remote sensing
Ships
Simulation
Stratocumulus clouds
Temperature
Time series
Tropical climate
Water
Water content
title Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20Radiative%20Fluxes%20through%20Southeastern%20Pacific%20Stratocumulus%20Clouds%20during%20VOCALS-REx&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Verlinden,%20Kathryn%20L.&rft.date=2018-04&rft.volume=35&rft.issue=4&rft.spage=821&rft.epage=836&rft.pages=821-836&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-17-0169.1&rft_dat=%3Cproquest_cross%3E2117968494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117968494&rft_id=info:pmid/&rfr_iscdi=true