A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability

A new morphing-based technique is proposed for the verification of precipitation forecasts for which the location error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image processing to the precipitation forecast verification problem, called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2018-05, Vol.146 (5), p.1303-1318
Hauptverfasser: Han, Fan, Szunyogh, Istvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1318
container_issue 5
container_start_page 1303
container_title Monthly weather review
container_volume 146
creator Han, Fan
Szunyogh, Istvan
description A new morphing-based technique is proposed for the verification of precipitation forecasts for which the location error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image processing to the precipitation forecast verification problem, called the amplitude and structural similarity index (ASSIM), is also introduced. ASSIM is used to measure both the convergence of the new morphing algorithm, which is an iterative scheme, and the amplitude and structure component of the forecast error. The behavior of the proposed technique, which could also be applied to other forecast parameters with sharp gradients (e.g., potential vorticity), is illustrated with idealized and realistic examples. One of these examples examines the predictability of the location of precipitation events associated with winter storms. It is found that the functional dependence of the average magnitude of the location error on the forecast lead time is qualitatively similar to that of the root-mean-square error of the fields of the conventional atmospheric state variables (e.g., geopotential height). Quantitatively, the average magnitude of the estimated location error is about 40 km at initial time, 110 km at day 1, 250 km at day 3, and 750 km at week 1, and it eventually saturates at about week 2.
doi_str_mv 10.1175/MWR-D-17-0040.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117927353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117927353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e41a767e9214ecb2a01f5d9154e6db3e5882f7d18dcbad08c4f87cf9d292045d3</originalsourceid><addsrcrecordid>eNo1kM1PAjEQxRujiYievTbxvNKv3e4eCQiSYDQG9dh0-xFKlu3algP_vSXgaTJv3pvJ_AB4xOgZY15O3n4-i3mBeYEQy9IVGOGSoAKxhl6DEUIkTyrGbsFdjDuEUFUxMgL9FG6M2vbu92Cg9QGmrYHfJjjrlEzO99Bb-BGMcoNLZ2HhcytjilD2Gq5ynQ5D929PHsoc8G1n9pesdirJ1nUuHe_BjZVdNA-XOgZfi5fN7LVYvy9Xs-m6UJRXqTAMS15x0xDMjGqJRNiWusElM5VuqSnrmliuca1VKzWqFbM1V7bRpCGIlZqOwdN57xB8_iwmsfOH0OeTgmRaDeG0pNk1ObtU8DEGY8UQ3F6Go8BInKCKDFXMBebiBFVg-geNGGtN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117927353</pqid></control><display><type>article</type><title>A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Fan ; Szunyogh, Istvan</creator><creatorcontrib>Han, Fan ; Szunyogh, Istvan</creatorcontrib><description>A new morphing-based technique is proposed for the verification of precipitation forecasts for which the location error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image processing to the precipitation forecast verification problem, called the amplitude and structural similarity index (ASSIM), is also introduced. ASSIM is used to measure both the convergence of the new morphing algorithm, which is an iterative scheme, and the amplitude and structure component of the forecast error. The behavior of the proposed technique, which could also be applied to other forecast parameters with sharp gradients (e.g., potential vorticity), is illustrated with idealized and realistic examples. One of these examples examines the predictability of the location of precipitation events associated with winter storms. It is found that the functional dependence of the average magnitude of the location error on the forecast lead time is qualitatively similar to that of the root-mean-square error of the fields of the conventional atmospheric state variables (e.g., geopotential height). Quantitatively, the average magnitude of the estimated location error is about 40 km at initial time, 110 km at day 1, 250 km at day 3, and 750 km at week 1, and it eventually saturates at about week 2.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-17-0040.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Adaptation ; Algorithms ; Amplitude ; Amplitudes ; Dependence ; Dynamic height ; Errors ; Forecast verification ; Geopotential ; Geopotential height ; Image processing ; Lead time ; Medical imaging ; Morphing ; Potential vorticity ; Precipitation ; Precipitation forecasting ; Quality ; Similarity ; State variable ; Storms ; Vorticity ; Weather forecasting ; Winter storms</subject><ispartof>Monthly weather review, 2018-05, Vol.146 (5), p.1303-1318</ispartof><rights>Copyright American Meteorological Society May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e41a767e9214ecb2a01f5d9154e6db3e5882f7d18dcbad08c4f87cf9d292045d3</citedby><cites>FETCH-LOGICAL-c376t-e41a767e9214ecb2a01f5d9154e6db3e5882f7d18dcbad08c4f87cf9d292045d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Fan</creatorcontrib><creatorcontrib>Szunyogh, Istvan</creatorcontrib><title>A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability</title><title>Monthly weather review</title><description>A new morphing-based technique is proposed for the verification of precipitation forecasts for which the location error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image processing to the precipitation forecast verification problem, called the amplitude and structural similarity index (ASSIM), is also introduced. ASSIM is used to measure both the convergence of the new morphing algorithm, which is an iterative scheme, and the amplitude and structure component of the forecast error. The behavior of the proposed technique, which could also be applied to other forecast parameters with sharp gradients (e.g., potential vorticity), is illustrated with idealized and realistic examples. One of these examples examines the predictability of the location of precipitation events associated with winter storms. It is found that the functional dependence of the average magnitude of the location error on the forecast lead time is qualitatively similar to that of the root-mean-square error of the fields of the conventional atmospheric state variables (e.g., geopotential height). Quantitatively, the average magnitude of the estimated location error is about 40 km at initial time, 110 km at day 1, 250 km at day 3, and 750 km at week 1, and it eventually saturates at about week 2.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Dependence</subject><subject>Dynamic height</subject><subject>Errors</subject><subject>Forecast verification</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Image processing</subject><subject>Lead time</subject><subject>Medical imaging</subject><subject>Morphing</subject><subject>Potential vorticity</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Quality</subject><subject>Similarity</subject><subject>State variable</subject><subject>Storms</subject><subject>Vorticity</subject><subject>Weather forecasting</subject><subject>Winter storms</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kM1PAjEQxRujiYievTbxvNKv3e4eCQiSYDQG9dh0-xFKlu3algP_vSXgaTJv3pvJ_AB4xOgZY15O3n4-i3mBeYEQy9IVGOGSoAKxhl6DEUIkTyrGbsFdjDuEUFUxMgL9FG6M2vbu92Cg9QGmrYHfJjjrlEzO99Bb-BGMcoNLZ2HhcytjilD2Gq5ynQ5D929PHsoc8G1n9pesdirJ1nUuHe_BjZVdNA-XOgZfi5fN7LVYvy9Xs-m6UJRXqTAMS15x0xDMjGqJRNiWusElM5VuqSnrmliuca1VKzWqFbM1V7bRpCGIlZqOwdN57xB8_iwmsfOH0OeTgmRaDeG0pNk1ObtU8DEGY8UQ3F6Go8BInKCKDFXMBebiBFVg-geNGGtN</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Han, Fan</creator><creator>Szunyogh, Istvan</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180501</creationdate><title>A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability</title><author>Han, Fan ; Szunyogh, Istvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e41a767e9214ecb2a01f5d9154e6db3e5882f7d18dcbad08c4f87cf9d292045d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Dependence</topic><topic>Dynamic height</topic><topic>Errors</topic><topic>Forecast verification</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Image processing</topic><topic>Lead time</topic><topic>Medical imaging</topic><topic>Morphing</topic><topic>Potential vorticity</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Quality</topic><topic>Similarity</topic><topic>State variable</topic><topic>Storms</topic><topic>Vorticity</topic><topic>Weather forecasting</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Fan</creatorcontrib><creatorcontrib>Szunyogh, Istvan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Fan</au><au>Szunyogh, Istvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability</atitle><jtitle>Monthly weather review</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>146</volume><issue>5</issue><spage>1303</spage><epage>1318</epage><pages>1303-1318</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>A new morphing-based technique is proposed for the verification of precipitation forecasts for which the location error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image processing to the precipitation forecast verification problem, called the amplitude and structural similarity index (ASSIM), is also introduced. ASSIM is used to measure both the convergence of the new morphing algorithm, which is an iterative scheme, and the amplitude and structure component of the forecast error. The behavior of the proposed technique, which could also be applied to other forecast parameters with sharp gradients (e.g., potential vorticity), is illustrated with idealized and realistic examples. One of these examples examines the predictability of the location of precipitation events associated with winter storms. It is found that the functional dependence of the average magnitude of the location error on the forecast lead time is qualitatively similar to that of the root-mean-square error of the fields of the conventional atmospheric state variables (e.g., geopotential height). Quantitatively, the average magnitude of the estimated location error is about 40 km at initial time, 110 km at day 1, 250 km at day 3, and 750 km at week 1, and it eventually saturates at about week 2.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-17-0040.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2018-05, Vol.146 (5), p.1303-1318
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_2117927353
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptation
Algorithms
Amplitude
Amplitudes
Dependence
Dynamic height
Errors
Forecast verification
Geopotential
Geopotential height
Image processing
Lead time
Medical imaging
Morphing
Potential vorticity
Precipitation
Precipitation forecasting
Quality
Similarity
State variable
Storms
Vorticity
Weather forecasting
Winter storms
title A Technique for the Verification of Precipitation Forecasts and Its Application to a Problem of Predictability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Technique%20for%20the%20Verification%20of%20Precipitation%20Forecasts%20and%20Its%20Application%20to%20a%20Problem%20of%20Predictability&rft.jtitle=Monthly%20weather%20review&rft.au=Han,%20Fan&rft.date=2018-05-01&rft.volume=146&rft.issue=5&rft.spage=1303&rft.epage=1318&rft.pages=1303-1318&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-17-0040.1&rft_dat=%3Cproquest_cross%3E2117927353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117927353&rft_id=info:pmid/&rfr_iscdi=true