Mesoscale Ascent in Nocturnal Low-Level Jets

A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2018-05, Vol.75 (5), p.1403-1427
Hauptverfasser: Shapiro, Alan, Fedorovich, Evgeni, Gebauer, Joshua G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1427
container_issue 5
container_start_page 1403
container_title Journal of the atmospheric sciences
container_volume 75
creator Shapiro, Alan
Fedorovich, Evgeni
Gebauer, Joshua G.
description A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s −1 , with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.
doi_str_mv 10.1175/JAS-D-17-0279.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117861746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117861746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EEqEws0Zixe2dP2JnjFoKVAEGYLZcx5FahaTYKYh_j0s5nXTLo9P7PoRcI0wRlZytqle6oKgoMFVO8YRkKBlQEEV5SjIAxqgomT4nFzFuIQ1TmJHbJx-H6Gzn8yo634_5ps-fBzfuQ2-7vB6-ae2_fJev_BgvyVlru-iv_u-EvC_v3uYPtH65f5xXNXUcYaQCQRZW-FYytK5onWSt50KUjdCWrcEKxkvVABOac63TStvoArVonQC15hNyc_y7C8Pn3sfRbIe_PNGw1DWhShSJmh0pF4YYg2_NLmw-bPgxCOagxCQlZmFQmYMSg_wX91RRIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117861746</pqid></control><display><type>article</type><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</creator><creatorcontrib>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</creatorcontrib><description>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s −1 , with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-17-0279.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Ascent ; Atmospheric boundary layer ; Boundary layers ; Boussinesq approximation ; Boussinesq equations ; Brunt-vaisala frequency ; Buoyancy ; Climate ; Cold ; Computational fluid dynamics ; Convection ; Density stratification ; Duration ; Energy conservation ; Equations of motion ; Fluid flow ; Free atmosphere ; Gravitational waves ; Gravity ; Gravity waves ; Inertia ; Inertia gravity waves ; Inertial oscillations ; Levels ; Low-level jets ; Lower troposphere ; Meteorology ; Mixed layer ; Plains ; Precipitation ; Rain ; Shutdowns ; Stratification ; Thermal energy ; Three dimensional motion ; Troposphere ; Turbulent mixing ; Two dimensional analysis ; Variation ; Velocity ; Vertical motion ; Vertical velocities ; Warm seasons ; Wavelengths ; Weather forecasting</subject><ispartof>Journal of the atmospheric sciences, 2018-05, Vol.75 (5), p.1403-1427</ispartof><rights>Copyright American Meteorological Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</citedby><cites>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3683,27931,27932</link.rule.ids></links><search><creatorcontrib>Shapiro, Alan</creatorcontrib><creatorcontrib>Fedorovich, Evgeni</creatorcontrib><creatorcontrib>Gebauer, Joshua G.</creatorcontrib><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><title>Journal of the atmospheric sciences</title><description>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s −1 , with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</description><subject>Ascent</subject><subject>Atmospheric boundary layer</subject><subject>Boundary layers</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Brunt-vaisala frequency</subject><subject>Buoyancy</subject><subject>Climate</subject><subject>Cold</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Density stratification</subject><subject>Duration</subject><subject>Energy conservation</subject><subject>Equations of motion</subject><subject>Fluid flow</subject><subject>Free atmosphere</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Gravity waves</subject><subject>Inertia</subject><subject>Inertia gravity waves</subject><subject>Inertial oscillations</subject><subject>Levels</subject><subject>Low-level jets</subject><subject>Lower troposphere</subject><subject>Meteorology</subject><subject>Mixed layer</subject><subject>Plains</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Shutdowns</subject><subject>Stratification</subject><subject>Thermal energy</subject><subject>Three dimensional motion</subject><subject>Troposphere</subject><subject>Turbulent mixing</subject><subject>Two dimensional analysis</subject><subject>Variation</subject><subject>Velocity</subject><subject>Vertical motion</subject><subject>Vertical velocities</subject><subject>Warm seasons</subject><subject>Wavelengths</subject><subject>Weather forecasting</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkD1PwzAQhi0EEqEws0Zixe2dP2JnjFoKVAEGYLZcx5FahaTYKYh_j0s5nXTLo9P7PoRcI0wRlZytqle6oKgoMFVO8YRkKBlQEEV5SjIAxqgomT4nFzFuIQ1TmJHbJx-H6Gzn8yo634_5ps-fBzfuQ2-7vB6-ae2_fJev_BgvyVlru-iv_u-EvC_v3uYPtH65f5xXNXUcYaQCQRZW-FYytK5onWSt50KUjdCWrcEKxkvVABOac63TStvoArVonQC15hNyc_y7C8Pn3sfRbIe_PNGw1DWhShSJmh0pF4YYg2_NLmw-bPgxCOagxCQlZmFQmYMSg_wX91RRIQ</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Shapiro, Alan</creator><creator>Fedorovich, Evgeni</creator><creator>Gebauer, Joshua G.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>201805</creationdate><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><author>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ascent</topic><topic>Atmospheric boundary layer</topic><topic>Boundary layers</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Brunt-vaisala frequency</topic><topic>Buoyancy</topic><topic>Climate</topic><topic>Cold</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Density stratification</topic><topic>Duration</topic><topic>Energy conservation</topic><topic>Equations of motion</topic><topic>Fluid flow</topic><topic>Free atmosphere</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Gravity waves</topic><topic>Inertia</topic><topic>Inertia gravity waves</topic><topic>Inertial oscillations</topic><topic>Levels</topic><topic>Low-level jets</topic><topic>Lower troposphere</topic><topic>Meteorology</topic><topic>Mixed layer</topic><topic>Plains</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Shutdowns</topic><topic>Stratification</topic><topic>Thermal energy</topic><topic>Three dimensional motion</topic><topic>Troposphere</topic><topic>Turbulent mixing</topic><topic>Two dimensional analysis</topic><topic>Variation</topic><topic>Velocity</topic><topic>Vertical motion</topic><topic>Vertical velocities</topic><topic>Warm seasons</topic><topic>Wavelengths</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Alan</creatorcontrib><creatorcontrib>Fedorovich, Evgeni</creatorcontrib><creatorcontrib>Gebauer, Joshua G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Alan</au><au>Fedorovich, Evgeni</au><au>Gebauer, Joshua G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale Ascent in Nocturnal Low-Level Jets</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2018-05</date><risdate>2018</risdate><volume>75</volume><issue>5</issue><spage>1403</spage><epage>1427</epage><pages>1403-1427</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s −1 , with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-17-0279.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2018-05, Vol.75 (5), p.1403-1427
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2117861746
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Ascent
Atmospheric boundary layer
Boundary layers
Boussinesq approximation
Boussinesq equations
Brunt-vaisala frequency
Buoyancy
Climate
Cold
Computational fluid dynamics
Convection
Density stratification
Duration
Energy conservation
Equations of motion
Fluid flow
Free atmosphere
Gravitational waves
Gravity
Gravity waves
Inertia
Inertia gravity waves
Inertial oscillations
Levels
Low-level jets
Lower troposphere
Meteorology
Mixed layer
Plains
Precipitation
Rain
Shutdowns
Stratification
Thermal energy
Three dimensional motion
Troposphere
Turbulent mixing
Two dimensional analysis
Variation
Velocity
Vertical motion
Vertical velocities
Warm seasons
Wavelengths
Weather forecasting
title Mesoscale Ascent in Nocturnal Low-Level Jets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20Ascent%20in%20Nocturnal%20Low-Level%20Jets&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Shapiro,%20Alan&rft.date=2018-05&rft.volume=75&rft.issue=5&rft.spage=1403&rft.epage=1427&rft.pages=1403-1427&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-17-0279.1&rft_dat=%3Cproquest_cross%3E2117861746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117861746&rft_id=info:pmid/&rfr_iscdi=true