Mesoscale Ascent in Nocturnal Low-Level Jets
A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2018-05, Vol.75 (5), p.1403-1427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1427 |
---|---|
container_issue | 5 |
container_start_page | 1403 |
container_title | Journal of the atmospheric sciences |
container_volume | 75 |
creator | Shapiro, Alan Fedorovich, Evgeni Gebauer, Joshua G. |
description | A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s
−1
, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue. |
doi_str_mv | 10.1175/JAS-D-17-0279.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117861746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117861746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EEqEws0Zixe2dP2JnjFoKVAEGYLZcx5FahaTYKYh_j0s5nXTLo9P7PoRcI0wRlZytqle6oKgoMFVO8YRkKBlQEEV5SjIAxqgomT4nFzFuIQ1TmJHbJx-H6Gzn8yo634_5ps-fBzfuQ2-7vB6-ae2_fJev_BgvyVlru-iv_u-EvC_v3uYPtH65f5xXNXUcYaQCQRZW-FYytK5onWSt50KUjdCWrcEKxkvVABOac63TStvoArVonQC15hNyc_y7C8Pn3sfRbIe_PNGw1DWhShSJmh0pF4YYg2_NLmw-bPgxCOagxCQlZmFQmYMSg_wX91RRIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117861746</pqid></control><display><type>article</type><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</creator><creatorcontrib>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</creatorcontrib><description>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s
−1
, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-17-0279.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Ascent ; Atmospheric boundary layer ; Boundary layers ; Boussinesq approximation ; Boussinesq equations ; Brunt-vaisala frequency ; Buoyancy ; Climate ; Cold ; Computational fluid dynamics ; Convection ; Density stratification ; Duration ; Energy conservation ; Equations of motion ; Fluid flow ; Free atmosphere ; Gravitational waves ; Gravity ; Gravity waves ; Inertia ; Inertia gravity waves ; Inertial oscillations ; Levels ; Low-level jets ; Lower troposphere ; Meteorology ; Mixed layer ; Plains ; Precipitation ; Rain ; Shutdowns ; Stratification ; Thermal energy ; Three dimensional motion ; Troposphere ; Turbulent mixing ; Two dimensional analysis ; Variation ; Velocity ; Vertical motion ; Vertical velocities ; Warm seasons ; Wavelengths ; Weather forecasting</subject><ispartof>Journal of the atmospheric sciences, 2018-05, Vol.75 (5), p.1403-1427</ispartof><rights>Copyright American Meteorological Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</citedby><cites>FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3683,27931,27932</link.rule.ids></links><search><creatorcontrib>Shapiro, Alan</creatorcontrib><creatorcontrib>Fedorovich, Evgeni</creatorcontrib><creatorcontrib>Gebauer, Joshua G.</creatorcontrib><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><title>Journal of the atmospheric sciences</title><description>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s
−1
, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</description><subject>Ascent</subject><subject>Atmospheric boundary layer</subject><subject>Boundary layers</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Brunt-vaisala frequency</subject><subject>Buoyancy</subject><subject>Climate</subject><subject>Cold</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Density stratification</subject><subject>Duration</subject><subject>Energy conservation</subject><subject>Equations of motion</subject><subject>Fluid flow</subject><subject>Free atmosphere</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Gravity waves</subject><subject>Inertia</subject><subject>Inertia gravity waves</subject><subject>Inertial oscillations</subject><subject>Levels</subject><subject>Low-level jets</subject><subject>Lower troposphere</subject><subject>Meteorology</subject><subject>Mixed layer</subject><subject>Plains</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Shutdowns</subject><subject>Stratification</subject><subject>Thermal energy</subject><subject>Three dimensional motion</subject><subject>Troposphere</subject><subject>Turbulent mixing</subject><subject>Two dimensional analysis</subject><subject>Variation</subject><subject>Velocity</subject><subject>Vertical motion</subject><subject>Vertical velocities</subject><subject>Warm seasons</subject><subject>Wavelengths</subject><subject>Weather forecasting</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkD1PwzAQhi0EEqEws0Zixe2dP2JnjFoKVAEGYLZcx5FahaTYKYh_j0s5nXTLo9P7PoRcI0wRlZytqle6oKgoMFVO8YRkKBlQEEV5SjIAxqgomT4nFzFuIQ1TmJHbJx-H6Gzn8yo634_5ps-fBzfuQ2-7vB6-ae2_fJev_BgvyVlru-iv_u-EvC_v3uYPtH65f5xXNXUcYaQCQRZW-FYytK5onWSt50KUjdCWrcEKxkvVABOac63TStvoArVonQC15hNyc_y7C8Pn3sfRbIe_PNGw1DWhShSJmh0pF4YYg2_NLmw-bPgxCOagxCQlZmFQmYMSg_wX91RRIQ</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Shapiro, Alan</creator><creator>Fedorovich, Evgeni</creator><creator>Gebauer, Joshua G.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>201805</creationdate><title>Mesoscale Ascent in Nocturnal Low-Level Jets</title><author>Shapiro, Alan ; Fedorovich, Evgeni ; Gebauer, Joshua G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-41056a4ef521ac6fc52fe3449d48a2b0a42397d024833883885ad86184fc407b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ascent</topic><topic>Atmospheric boundary layer</topic><topic>Boundary layers</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Brunt-vaisala frequency</topic><topic>Buoyancy</topic><topic>Climate</topic><topic>Cold</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Density stratification</topic><topic>Duration</topic><topic>Energy conservation</topic><topic>Equations of motion</topic><topic>Fluid flow</topic><topic>Free atmosphere</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Gravity waves</topic><topic>Inertia</topic><topic>Inertia gravity waves</topic><topic>Inertial oscillations</topic><topic>Levels</topic><topic>Low-level jets</topic><topic>Lower troposphere</topic><topic>Meteorology</topic><topic>Mixed layer</topic><topic>Plains</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Shutdowns</topic><topic>Stratification</topic><topic>Thermal energy</topic><topic>Three dimensional motion</topic><topic>Troposphere</topic><topic>Turbulent mixing</topic><topic>Two dimensional analysis</topic><topic>Variation</topic><topic>Velocity</topic><topic>Vertical motion</topic><topic>Vertical velocities</topic><topic>Warm seasons</topic><topic>Wavelengths</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Alan</creatorcontrib><creatorcontrib>Fedorovich, Evgeni</creatorcontrib><creatorcontrib>Gebauer, Joshua G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Alan</au><au>Fedorovich, Evgeni</au><au>Gebauer, Joshua G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale Ascent in Nocturnal Low-Level Jets</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2018-05</date><risdate>2018</risdate><volume>75</volume><issue>5</issue><spage>1403</spage><epage>1427</epage><pages>1403-1427</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s
−1
, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-17-0279.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2018-05, Vol.75 (5), p.1403-1427 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2117861746 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Ascent Atmospheric boundary layer Boundary layers Boussinesq approximation Boussinesq equations Brunt-vaisala frequency Buoyancy Climate Cold Computational fluid dynamics Convection Density stratification Duration Energy conservation Equations of motion Fluid flow Free atmosphere Gravitational waves Gravity Gravity waves Inertia Inertia gravity waves Inertial oscillations Levels Low-level jets Lower troposphere Meteorology Mixed layer Plains Precipitation Rain Shutdowns Stratification Thermal energy Three dimensional motion Troposphere Turbulent mixing Two dimensional analysis Variation Velocity Vertical motion Vertical velocities Warm seasons Wavelengths Weather forecasting |
title | Mesoscale Ascent in Nocturnal Low-Level Jets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20Ascent%20in%20Nocturnal%20Low-Level%20Jets&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Shapiro,%20Alan&rft.date=2018-05&rft.volume=75&rft.issue=5&rft.spage=1403&rft.epage=1427&rft.pages=1403-1427&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-17-0279.1&rft_dat=%3Cproquest_cross%3E2117861746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117861746&rft_id=info:pmid/&rfr_iscdi=true |