Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables

Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2018-03, Vol.57 (3), p.525-534
Hauptverfasser: Bates, Bryson C., Dowdy, Andrew J., Chandler, Richard E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 3
container_start_page 525
container_title Journal of applied meteorology and climatology
container_volume 57
creator Bates, Bryson C.
Dowdy, Andrew J.
Chandler, Richard E.
description Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logisticregression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.
doi_str_mv 10.1175/JAMC-D-17-0214.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2117552393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26501004</jstor_id><sourcerecordid>26501004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-96c959d3e699d662e37baa27375579f559d86b5337171b6515e51381e41257193</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvvggBnzN7SdM0j2XzJx0KOl9D2qVbRrfMJBX239sy2dMd9_3ccXwQuoVkAiD4w1sxn5IZAUESCukEztAIOM9JnjJ6fuppeomuQtgkSZoKwUeoLu1qHXd2t8If3ixtHa3b4cZ5XHQhet1ajRdhiOddG-2v9lZHg4udbg_BBOwaXGq_MuSz1m0_j1sX9mvjbY2_B7ZqTbhGF41ug7n5r2O0eHr8mr6Q8v35dVqUpGaMRyKzWnK5ZCaTcpll1DBRaU0FE5wL2fA-y7OKMyZAQJVx4IYDy8GkQLkAycbo_nh3791PZ0JUG9f5_tOg6OCIUyZZTyVHqvYuBG8atfd2q_1BQaIGTA0q1UyBUINKBf3K3XFlE6LzJ55mPIHeJPsDKDBvkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117552393</pqid></control><display><type>article</type><title>Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bates, Bryson C. ; Dowdy, Andrew J. ; Chandler, Richard E.</creator><creatorcontrib>Bates, Bryson C. ; Dowdy, Andrew J. ; Chandler, Richard E.</creatorcontrib><description>Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logisticregression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-17-0214.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airports ; Archives &amp; records ; Atmospheric models ; Atmospheric water ; Classification ; Climate change ; Climatic zones ; Climatology ; Discriminant analysis ; Disruption ; Forests ; General circulation models ; Instability ; Learning algorithms ; Lightning ; Lightning flashes ; Livestock ; Machine learning ; Mathematical models ; Moisture content ; Principal components analysis ; Regression analysis ; Regression models ; Sensors ; Stability ; Statistical analysis ; Variables ; Water content ; Weather ; Wildfires</subject><ispartof>Journal of applied meteorology and climatology, 2018-03, Vol.57 (3), p.525-534</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-96c959d3e699d662e37baa27375579f559d86b5337171b6515e51381e41257193</citedby><cites>FETCH-LOGICAL-c335t-96c959d3e699d662e37baa27375579f559d86b5337171b6515e51381e41257193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26501004$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26501004$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Bates, Bryson C.</creatorcontrib><creatorcontrib>Dowdy, Andrew J.</creatorcontrib><creatorcontrib>Chandler, Richard E.</creatorcontrib><title>Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables</title><title>Journal of applied meteorology and climatology</title><description>Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logisticregression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.</description><subject>Airports</subject><subject>Archives &amp; records</subject><subject>Atmospheric models</subject><subject>Atmospheric water</subject><subject>Classification</subject><subject>Climate change</subject><subject>Climatic zones</subject><subject>Climatology</subject><subject>Discriminant analysis</subject><subject>Disruption</subject><subject>Forests</subject><subject>General circulation models</subject><subject>Instability</subject><subject>Learning algorithms</subject><subject>Lightning</subject><subject>Lightning flashes</subject><subject>Livestock</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Moisture content</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sensors</subject><subject>Stability</subject><subject>Statistical analysis</subject><subject>Variables</subject><subject>Water content</subject><subject>Weather</subject><subject>Wildfires</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvvggBnzN7SdM0j2XzJx0KOl9D2qVbRrfMJBX239sy2dMd9_3ccXwQuoVkAiD4w1sxn5IZAUESCukEztAIOM9JnjJ6fuppeomuQtgkSZoKwUeoLu1qHXd2t8If3ixtHa3b4cZ5XHQhet1ajRdhiOddG-2v9lZHg4udbg_BBOwaXGq_MuSz1m0_j1sX9mvjbY2_B7ZqTbhGF41ug7n5r2O0eHr8mr6Q8v35dVqUpGaMRyKzWnK5ZCaTcpll1DBRaU0FE5wL2fA-y7OKMyZAQJVx4IYDy8GkQLkAycbo_nh3791PZ0JUG9f5_tOg6OCIUyZZTyVHqvYuBG8atfd2q_1BQaIGTA0q1UyBUINKBf3K3XFlE6LzJ55mPIHeJPsDKDBvkQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bates, Bryson C.</creator><creator>Dowdy, Andrew J.</creator><creator>Chandler, Richard E.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20180301</creationdate><title>Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables</title><author>Bates, Bryson C. ; Dowdy, Andrew J. ; Chandler, Richard E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-96c959d3e699d662e37baa27375579f559d86b5337171b6515e51381e41257193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Airports</topic><topic>Archives &amp; records</topic><topic>Atmospheric models</topic><topic>Atmospheric water</topic><topic>Classification</topic><topic>Climate change</topic><topic>Climatic zones</topic><topic>Climatology</topic><topic>Discriminant analysis</topic><topic>Disruption</topic><topic>Forests</topic><topic>General circulation models</topic><topic>Instability</topic><topic>Learning algorithms</topic><topic>Lightning</topic><topic>Lightning flashes</topic><topic>Livestock</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Moisture content</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sensors</topic><topic>Stability</topic><topic>Statistical analysis</topic><topic>Variables</topic><topic>Water content</topic><topic>Weather</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bates, Bryson C.</creatorcontrib><creatorcontrib>Dowdy, Andrew J.</creatorcontrib><creatorcontrib>Chandler, Richard E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Bryson C.</au><au>Dowdy, Andrew J.</au><au>Chandler, Richard E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>57</volume><issue>3</issue><spage>525</spage><epage>534</epage><pages>525-534</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logisticregression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-17-0214.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2018-03, Vol.57 (3), p.525-534
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_2117552393
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Airports
Archives & records
Atmospheric models
Atmospheric water
Classification
Climate change
Climatic zones
Climatology
Discriminant analysis
Disruption
Forests
General circulation models
Instability
Learning algorithms
Lightning
Lightning flashes
Livestock
Machine learning
Mathematical models
Moisture content
Principal components analysis
Regression analysis
Regression models
Sensors
Stability
Statistical analysis
Variables
Water content
Weather
Wildfires
title Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightning%20Prediction%20for%20Australia%20Using%20Multivariate%20Analyses%20of%20Large-Scale%20Atmospheric%20Variables&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Bates,%20Bryson%20C.&rft.date=2018-03-01&rft.volume=57&rft.issue=3&rft.spage=525&rft.epage=534&rft.pages=525-534&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/JAMC-D-17-0214.1&rft_dat=%3Cjstor_proqu%3E26501004%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117552393&rft_id=info:pmid/&rft_jstor_id=26501004&rfr_iscdi=true