Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry
A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this p...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2018-01, Vol.39 (12), p.1-16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | International journal of thermophysics |
container_volume | 39 |
creator | Wolff, Ludger Zangi, Pouria Brands, Thorsten Michael Heinrich Rausch Koß, Hans-Jürgen Fröba, Andreas Paul Bardow, André |
description | A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases. |
doi_str_mv | 10.1007/s10765-018-2451-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117474608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117474608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</originalsourceid><addsrcrecordid>eNotjU1LAzEARIMoWKs_wFvAczQfm83mqFttCxUvFbyVJJu0KdukJlm04I93QU_z5h1mALgl-J5gLB4ywaLmCJMG0YoTJM7AhHBBkeS1OAcTTCRHkjYfl-Aq5z3GWArJJuCnjcHYUJIqPgY0s0cburHDmXduyKODbbTOeeNHm2F08MkHlU5wrjJ89d9lSDbD9-zDFiq4itnsDr4rsLV9D7982cFF7OM2qePOG7gMxSZnUzzYkk7X4MKpPtub_5yC9cvzul2g1dt82T6ukBF1gxrJMdFK6k4RV2EhpdGU8bpStaPMuI5hSp3AUmnWUU1N5TjRIxGNKXOETcHd3-wxxc_B5rLZxyGF8XFDCRGVqGrcsF_PQWHy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117474608</pqid></control><display><type>article</type><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</creator><creatorcontrib>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</creatorcontrib><description>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-018-2451-7</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Dependence ; Diffusion ; Diffusion coefficient ; Gas mixtures ; Geophysics ; Helium ; Holographic interferometry ; Interferometry ; Krypton ; Mathematical models ; Real gases ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2018-01, Vol.39 (12), p.1-16</ispartof><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wolff, Ludger</creatorcontrib><creatorcontrib>Zangi, Pouria</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Michael Heinrich Rausch</creatorcontrib><creatorcontrib>Koß, Hans-Jürgen</creatorcontrib><creatorcontrib>Fröba, Andreas Paul</creatorcontrib><creatorcontrib>Bardow, André</creatorcontrib><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><title>International journal of thermophysics</title><description>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</description><subject>Dependence</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Gas mixtures</subject><subject>Geophysics</subject><subject>Helium</subject><subject>Holographic interferometry</subject><subject>Interferometry</subject><subject>Krypton</subject><subject>Mathematical models</subject><subject>Real gases</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjU1LAzEARIMoWKs_wFvAczQfm83mqFttCxUvFbyVJJu0KdukJlm04I93QU_z5h1mALgl-J5gLB4ywaLmCJMG0YoTJM7AhHBBkeS1OAcTTCRHkjYfl-Aq5z3GWArJJuCnjcHYUJIqPgY0s0cburHDmXduyKODbbTOeeNHm2F08MkHlU5wrjJ89d9lSDbD9-zDFiq4itnsDr4rsLV9D7982cFF7OM2qePOG7gMxSZnUzzYkk7X4MKpPtub_5yC9cvzul2g1dt82T6ukBF1gxrJMdFK6k4RV2EhpdGU8bpStaPMuI5hSp3AUmnWUU1N5TjRIxGNKXOETcHd3-wxxc_B5rLZxyGF8XFDCRGVqGrcsF_PQWHy</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wolff, Ludger</creator><creator>Zangi, Pouria</creator><creator>Brands, Thorsten</creator><creator>Michael Heinrich Rausch</creator><creator>Koß, Hans-Jürgen</creator><creator>Fröba, Andreas Paul</creator><creator>Bardow, André</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180101</creationdate><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><author>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dependence</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Gas mixtures</topic><topic>Geophysics</topic><topic>Helium</topic><topic>Holographic interferometry</topic><topic>Interferometry</topic><topic>Krypton</topic><topic>Mathematical models</topic><topic>Real gases</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolff, Ludger</creatorcontrib><creatorcontrib>Zangi, Pouria</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Michael Heinrich Rausch</creatorcontrib><creatorcontrib>Koß, Hans-Jürgen</creatorcontrib><creatorcontrib>Fröba, Andreas Paul</creatorcontrib><creatorcontrib>Bardow, André</creatorcontrib><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolff, Ludger</au><au>Zangi, Pouria</au><au>Brands, Thorsten</au><au>Michael Heinrich Rausch</au><au>Koß, Hans-Jürgen</au><au>Fröba, Andreas Paul</au><au>Bardow, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</atitle><jtitle>International journal of thermophysics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10765-018-2451-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International journal of thermophysics, 2018-01, Vol.39 (12), p.1-16 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_proquest_journals_2117474608 |
source | SpringerLink Journals - AutoHoldings |
subjects | Dependence Diffusion Diffusion coefficient Gas mixtures Geophysics Helium Holographic interferometry Interferometry Krypton Mathematical models Real gases Thermodynamics |
title | Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration-Dependent%20Diffusion%20Coefficients%20of%20Binary%20Gas%20Mixtures%20Using%20a%20Loschmidt%20Cell%20with%20Holographic%20Interferometry&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Wolff,%20Ludger&rft.date=2018-01-01&rft.volume=39&rft.issue=12&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-018-2451-7&rft_dat=%3Cproquest%3E2117474608%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117474608&rft_id=info:pmid/&rfr_iscdi=true |