Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry

A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2018-01, Vol.39 (12), p.1-16
Hauptverfasser: Wolff, Ludger, Zangi, Pouria, Brands, Thorsten, Michael Heinrich Rausch, Koß, Hans-Jürgen, Fröba, Andreas Paul, Bardow, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 12
container_start_page 1
container_title International journal of thermophysics
container_volume 39
creator Wolff, Ludger
Zangi, Pouria
Brands, Thorsten
Michael Heinrich Rausch
Koß, Hans-Jürgen
Fröba, Andreas Paul
Bardow, André
description A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.
doi_str_mv 10.1007/s10765-018-2451-7
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117474608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117474608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</originalsourceid><addsrcrecordid>eNotjU1LAzEARIMoWKs_wFvAczQfm83mqFttCxUvFbyVJJu0KdukJlm04I93QU_z5h1mALgl-J5gLB4ywaLmCJMG0YoTJM7AhHBBkeS1OAcTTCRHkjYfl-Aq5z3GWArJJuCnjcHYUJIqPgY0s0cburHDmXduyKODbbTOeeNHm2F08MkHlU5wrjJ89d9lSDbD9-zDFiq4itnsDr4rsLV9D7982cFF7OM2qePOG7gMxSZnUzzYkk7X4MKpPtub_5yC9cvzul2g1dt82T6ukBF1gxrJMdFK6k4RV2EhpdGU8bpStaPMuI5hSp3AUmnWUU1N5TjRIxGNKXOETcHd3-wxxc_B5rLZxyGF8XFDCRGVqGrcsF_PQWHy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117474608</pqid></control><display><type>article</type><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</creator><creatorcontrib>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</creatorcontrib><description>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-018-2451-7</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Dependence ; Diffusion ; Diffusion coefficient ; Gas mixtures ; Geophysics ; Helium ; Holographic interferometry ; Interferometry ; Krypton ; Mathematical models ; Real gases ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2018-01, Vol.39 (12), p.1-16</ispartof><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wolff, Ludger</creatorcontrib><creatorcontrib>Zangi, Pouria</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Michael Heinrich Rausch</creatorcontrib><creatorcontrib>Koß, Hans-Jürgen</creatorcontrib><creatorcontrib>Fröba, Andreas Paul</creatorcontrib><creatorcontrib>Bardow, André</creatorcontrib><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><title>International journal of thermophysics</title><description>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</description><subject>Dependence</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Gas mixtures</subject><subject>Geophysics</subject><subject>Helium</subject><subject>Holographic interferometry</subject><subject>Interferometry</subject><subject>Krypton</subject><subject>Mathematical models</subject><subject>Real gases</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjU1LAzEARIMoWKs_wFvAczQfm83mqFttCxUvFbyVJJu0KdukJlm04I93QU_z5h1mALgl-J5gLB4ywaLmCJMG0YoTJM7AhHBBkeS1OAcTTCRHkjYfl-Aq5z3GWArJJuCnjcHYUJIqPgY0s0cburHDmXduyKODbbTOeeNHm2F08MkHlU5wrjJ89d9lSDbD9-zDFiq4itnsDr4rsLV9D7982cFF7OM2qePOG7gMxSZnUzzYkk7X4MKpPtub_5yC9cvzul2g1dt82T6ukBF1gxrJMdFK6k4RV2EhpdGU8bpStaPMuI5hSp3AUmnWUU1N5TjRIxGNKXOETcHd3-wxxc_B5rLZxyGF8XFDCRGVqGrcsF_PQWHy</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wolff, Ludger</creator><creator>Zangi, Pouria</creator><creator>Brands, Thorsten</creator><creator>Michael Heinrich Rausch</creator><creator>Koß, Hans-Jürgen</creator><creator>Fröba, Andreas Paul</creator><creator>Bardow, André</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180101</creationdate><title>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</title><author>Wolff, Ludger ; Zangi, Pouria ; Brands, Thorsten ; Michael Heinrich Rausch ; Koß, Hans-Jürgen ; Fröba, Andreas Paul ; Bardow, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768-89501ba9bda1f40799cb23564a6f23cfd3022f709ab3d2b2c4f51bd2b1b023f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dependence</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Gas mixtures</topic><topic>Geophysics</topic><topic>Helium</topic><topic>Holographic interferometry</topic><topic>Interferometry</topic><topic>Krypton</topic><topic>Mathematical models</topic><topic>Real gases</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolff, Ludger</creatorcontrib><creatorcontrib>Zangi, Pouria</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Michael Heinrich Rausch</creatorcontrib><creatorcontrib>Koß, Hans-Jürgen</creatorcontrib><creatorcontrib>Fröba, Andreas Paul</creatorcontrib><creatorcontrib>Bardow, André</creatorcontrib><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolff, Ludger</au><au>Zangi, Pouria</au><au>Brands, Thorsten</au><au>Michael Heinrich Rausch</au><au>Koß, Hans-Jürgen</au><au>Fröba, Andreas Paul</au><au>Bardow, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry</atitle><jtitle>International journal of thermophysics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10765-018-2451-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2018-01, Vol.39 (12), p.1-16
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2117474608
source SpringerLink Journals - AutoHoldings
subjects Dependence
Diffusion
Diffusion coefficient
Gas mixtures
Geophysics
Helium
Holographic interferometry
Interferometry
Krypton
Mathematical models
Real gases
Thermodynamics
title Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration-Dependent%20Diffusion%20Coefficients%20of%20Binary%20Gas%20Mixtures%20Using%20a%20Loschmidt%20Cell%20with%20Holographic%20Interferometry&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Wolff,%20Ludger&rft.date=2018-01-01&rft.volume=39&rft.issue=12&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-018-2451-7&rft_dat=%3Cproquest%3E2117474608%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117474608&rft_id=info:pmid/&rfr_iscdi=true