NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks

Internet of Things (IoT) makes physical objects and devices interact with each other through wireless technologies. IoT is expected to deliver a significant role in our lives in near future. However, at the current stage, IoT is vulnerable to various kinds of security threats just like other wired a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2018-10, Vol.74 (10), p.5156-5170
Hauptverfasser: Mehmood, Amjad, Mukherjee, Mithun, Ahmed, Syed Hassan, Song, Houbing, Malik, Khalid Mahmood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5170
container_issue 10
container_start_page 5156
container_title The Journal of supercomputing
container_volume 74
creator Mehmood, Amjad
Mukherjee, Mithun
Ahmed, Syed Hassan
Song, Houbing
Malik, Khalid Mahmood
description Internet of Things (IoT) makes physical objects and devices interact with each other through wireless technologies. IoT is expected to deliver a significant role in our lives in near future. However, at the current stage, IoT is vulnerable to various kinds of security threats just like other wired and wireless networks. Our work mainly focuses on protecting an IoT infrastructure from distributed denial-of-service attacks generated by the intruders. We present a new approach of using Naïve Bayes classification algorithm applied in intrusion detection systems (IDSs). IDSs are deployed in the form of multi-agents throughout the network to sense the misbehaving or irregular traffic and actions of nodes. In the paper, we also discuss the fundamental concepts related to our work and recent research done in similar area.
doi_str_mv 10.1007/s11227-018-2413-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117464911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117464911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7d5c535b17812b5cd4b25d4084c417a34e955b5d966843b3a7541ee8b1b44cb3</originalsourceid><addsrcrecordid>eNp1kMtOAjEUhhujiXh5AHdNXFd7eqEz7rh4IUFdwL7pdAoUoYNtMSHxnXwIX8whmLhydTb__51zPoSugN4Apeo2ATCmCIWCMAGcqCPUAak4oaIQx6hDS0ZJIQU7RWcpLSmlgiveQZ8v_QF57o2Gkzv8Yr6_Phzum51L3gRsVyYlP_PWZN8EnJ1dBP--ddgHvN6usidm7kLGaZeyWxMXorcLV-MWhmdNxMnZbfRhjkfNFJu58SFlPBw2E2xyNvYtXaCTmVkld_k7z9H04X46eCLj18fRoDcmlssyE1VLK7msQBXAKmlrUTFZC1oIK0AZLlwpZSXrststBK-4UVKAc0UFlRC24ufo-oDdxKY9P2W9bLYxtBs1A1CiK0qANgWHlI1NStHN9Cb6tYk7DVTvHeuDY9061nvHWrUdduikzf5RF__I_5d-ACqvfss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117464911</pqid></control><display><type>article</type><title>NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mehmood, Amjad ; Mukherjee, Mithun ; Ahmed, Syed Hassan ; Song, Houbing ; Malik, Khalid Mahmood</creator><creatorcontrib>Mehmood, Amjad ; Mukherjee, Mithun ; Ahmed, Syed Hassan ; Song, Houbing ; Malik, Khalid Mahmood</creatorcontrib><description>Internet of Things (IoT) makes physical objects and devices interact with each other through wireless technologies. IoT is expected to deliver a significant role in our lives in near future. However, at the current stage, IoT is vulnerable to various kinds of security threats just like other wired and wireless networks. Our work mainly focuses on protecting an IoT infrastructure from distributed denial-of-service attacks generated by the intruders. We present a new approach of using Naïve Bayes classification algorithm applied in intrusion detection systems (IDSs). IDSs are deployed in the form of multi-agents throughout the network to sense the misbehaving or irregular traffic and actions of nodes. In the paper, we also discuss the fundamental concepts related to our work and recent research done in similar area.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2413-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Classification ; Compilers ; Computer Science ; Cybersecurity ; Denial of service attacks ; Internet of Things ; Interpreters ; Intrusion detection systems ; Multiagent systems ; Processor Architectures ; Programming Languages ; Security management ; Wireless networks</subject><ispartof>The Journal of supercomputing, 2018-10, Vol.74 (10), p.5156-5170</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7d5c535b17812b5cd4b25d4084c417a34e955b5d966843b3a7541ee8b1b44cb3</citedby><cites>FETCH-LOGICAL-c359t-7d5c535b17812b5cd4b25d4084c417a34e955b5d966843b3a7541ee8b1b44cb3</cites><orcidid>0000-0003-2631-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-018-2413-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-018-2413-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mehmood, Amjad</creatorcontrib><creatorcontrib>Mukherjee, Mithun</creatorcontrib><creatorcontrib>Ahmed, Syed Hassan</creatorcontrib><creatorcontrib>Song, Houbing</creatorcontrib><creatorcontrib>Malik, Khalid Mahmood</creatorcontrib><title>NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Internet of Things (IoT) makes physical objects and devices interact with each other through wireless technologies. IoT is expected to deliver a significant role in our lives in near future. However, at the current stage, IoT is vulnerable to various kinds of security threats just like other wired and wireless networks. Our work mainly focuses on protecting an IoT infrastructure from distributed denial-of-service attacks generated by the intruders. We present a new approach of using Naïve Bayes classification algorithm applied in intrusion detection systems (IDSs). IDSs are deployed in the form of multi-agents throughout the network to sense the misbehaving or irregular traffic and actions of nodes. In the paper, we also discuss the fundamental concepts related to our work and recent research done in similar area.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Denial of service attacks</subject><subject>Internet of Things</subject><subject>Interpreters</subject><subject>Intrusion detection systems</subject><subject>Multiagent systems</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Security management</subject><subject>Wireless networks</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAjEUhhujiXh5AHdNXFd7eqEz7rh4IUFdwL7pdAoUoYNtMSHxnXwIX8whmLhydTb__51zPoSugN4Apeo2ATCmCIWCMAGcqCPUAak4oaIQx6hDS0ZJIQU7RWcpLSmlgiveQZ8v_QF57o2Gkzv8Yr6_Phzum51L3gRsVyYlP_PWZN8EnJ1dBP--ddgHvN6usidm7kLGaZeyWxMXorcLV-MWhmdNxMnZbfRhjkfNFJu58SFlPBw2E2xyNvYtXaCTmVkld_k7z9H04X46eCLj18fRoDcmlssyE1VLK7msQBXAKmlrUTFZC1oIK0AZLlwpZSXrststBK-4UVKAc0UFlRC24ufo-oDdxKY9P2W9bLYxtBs1A1CiK0qANgWHlI1NStHN9Cb6tYk7DVTvHeuDY9061nvHWrUdduikzf5RF__I_5d-ACqvfss</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Mehmood, Amjad</creator><creator>Mukherjee, Mithun</creator><creator>Ahmed, Syed Hassan</creator><creator>Song, Houbing</creator><creator>Malik, Khalid Mahmood</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2631-9223</orcidid></search><sort><creationdate>20181001</creationdate><title>NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks</title><author>Mehmood, Amjad ; Mukherjee, Mithun ; Ahmed, Syed Hassan ; Song, Houbing ; Malik, Khalid Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7d5c535b17812b5cd4b25d4084c417a34e955b5d966843b3a7541ee8b1b44cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Denial of service attacks</topic><topic>Internet of Things</topic><topic>Interpreters</topic><topic>Intrusion detection systems</topic><topic>Multiagent systems</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Security management</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehmood, Amjad</creatorcontrib><creatorcontrib>Mukherjee, Mithun</creatorcontrib><creatorcontrib>Ahmed, Syed Hassan</creatorcontrib><creatorcontrib>Song, Houbing</creatorcontrib><creatorcontrib>Malik, Khalid Mahmood</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehmood, Amjad</au><au>Mukherjee, Mithun</au><au>Ahmed, Syed Hassan</au><au>Song, Houbing</au><au>Malik, Khalid Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>74</volume><issue>10</issue><spage>5156</spage><epage>5170</epage><pages>5156-5170</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Internet of Things (IoT) makes physical objects and devices interact with each other through wireless technologies. IoT is expected to deliver a significant role in our lives in near future. However, at the current stage, IoT is vulnerable to various kinds of security threats just like other wired and wireless networks. Our work mainly focuses on protecting an IoT infrastructure from distributed denial-of-service attacks generated by the intruders. We present a new approach of using Naïve Bayes classification algorithm applied in intrusion detection systems (IDSs). IDSs are deployed in the form of multi-agents throughout the network to sense the misbehaving or irregular traffic and actions of nodes. In the paper, we also discuss the fundamental concepts related to our work and recent research done in similar area.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2413-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2631-9223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2018-10, Vol.74 (10), p.5156-5170
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2117464911
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Classification
Compilers
Computer Science
Cybersecurity
Denial of service attacks
Internet of Things
Interpreters
Intrusion detection systems
Multiagent systems
Processor Architectures
Programming Languages
Security management
Wireless networks
title NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NBC-MAIDS:%20Na%C3%AFve%20Bayesian%20classification%20technique%20in%20multi-agent%20system-enriched%20IDS%20for%20securing%20IoT%20against%20DDoS%20attacks&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Mehmood,%20Amjad&rft.date=2018-10-01&rft.volume=74&rft.issue=10&rft.spage=5156&rft.epage=5170&rft.pages=5156-5170&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2413-7&rft_dat=%3Cproquest_cross%3E2117464911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117464911&rft_id=info:pmid/&rfr_iscdi=true