Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state-of-the-art in autonomous operation of ground-based and flying robots. In this article, we describe our winning entry to MBZIRC Challenge 2: the mobile manipulation robot Mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-10
Hauptverfasser: Schwarz, Max, Droeschel, David, Lenz, Christian, Arul Selvam Periyasamy, En Yen Puang, Razlaw, Jan, Rodriguez, Diego, Schüller, Sebastian, Schreiber, Michael, Behnke, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schwarz, Max
Droeschel, David
Lenz, Christian
Arul Selvam Periyasamy
En Yen Puang
Razlaw, Jan
Rodriguez, Diego
Schüller, Sebastian
Schreiber, Michael
Behnke, Sven
description The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state-of-the-art in autonomous operation of ground-based and flying robots. In this article, we describe our winning entry to MBZIRC Challenge 2: the mobile manipulation robot Mario. It is capable of autonomously solving a valve manipulation task using a wrench tool detected, grasped, and finally employed to turn a valve stem. Mario's omnidirectional base allows both fast locomotion and precise close approach to the manipulation panel. We describe an efficient detector for medium-sized objects in 3D laser scans and apply it to detect the manipulation panel. An object detection architecture based on deep neural networks is used to find and select the correct tool from grayscale images. Parametrized motion primitives are adapted online to percepts of the tool and valve stem in order to turn the stem. We report in detail on our winning performance at the challenge and discuss lessons learned.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117274961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117274961</sourcerecordid><originalsourceid>FETCH-proquest_journals_21172749613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwCElNzFXwy8xNCspXSCxR8HWK8gxyVjAyMDS3UnAsLcnPy8_NLy1WCEvMKUtVCC5JzVUIKS3Ky8xLVygtBpGJCuFFqXnJGTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-Kx-oESgVb2RoaG5kbmJpZmhMnCoA6fM5kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117274961</pqid></control><display><type>article</type><title>Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench</title><source>Free E- Journals</source><creator>Schwarz, Max ; Droeschel, David ; Lenz, Christian ; Arul Selvam Periyasamy ; En Yen Puang ; Razlaw, Jan ; Rodriguez, Diego ; Schüller, Sebastian ; Schreiber, Michael ; Behnke, Sven</creator><creatorcontrib>Schwarz, Max ; Droeschel, David ; Lenz, Christian ; Arul Selvam Periyasamy ; En Yen Puang ; Razlaw, Jan ; Rodriguez, Diego ; Schüller, Sebastian ; Schreiber, Michael ; Behnke, Sven</creatorcontrib><description>The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state-of-the-art in autonomous operation of ground-based and flying robots. In this article, we describe our winning entry to MBZIRC Challenge 2: the mobile manipulation robot Mario. It is capable of autonomously solving a valve manipulation task using a wrench tool detected, grasped, and finally employed to turn a valve stem. Mario's omnidirectional base allows both fast locomotion and precise close approach to the manipulation panel. We describe an efficient detector for medium-sized objects in 3D laser scans and apply it to detect the manipulation panel. An object detection architecture based on deep neural networks is used to find and select the correct tool from grayscale images. Parametrized motion primitives are adapted online to percepts of the tool and valve stem in order to turn the stem. We report in detail on our winning performance at the challenge and discuss lessons learned.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Locomotion ; Neural networks ; Object recognition ; Repair &amp; maintenance ; Robotics ; Robots ; Wrenches</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Schwarz, Max</creatorcontrib><creatorcontrib>Droeschel, David</creatorcontrib><creatorcontrib>Lenz, Christian</creatorcontrib><creatorcontrib>Arul Selvam Periyasamy</creatorcontrib><creatorcontrib>En Yen Puang</creatorcontrib><creatorcontrib>Razlaw, Jan</creatorcontrib><creatorcontrib>Rodriguez, Diego</creatorcontrib><creatorcontrib>Schüller, Sebastian</creatorcontrib><creatorcontrib>Schreiber, Michael</creatorcontrib><creatorcontrib>Behnke, Sven</creatorcontrib><title>Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench</title><title>arXiv.org</title><description>The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state-of-the-art in autonomous operation of ground-based and flying robots. In this article, we describe our winning entry to MBZIRC Challenge 2: the mobile manipulation robot Mario. It is capable of autonomously solving a valve manipulation task using a wrench tool detected, grasped, and finally employed to turn a valve stem. Mario's omnidirectional base allows both fast locomotion and precise close approach to the manipulation panel. We describe an efficient detector for medium-sized objects in 3D laser scans and apply it to detect the manipulation panel. An object detection architecture based on deep neural networks is used to find and select the correct tool from grayscale images. Parametrized motion primitives are adapted online to percepts of the tool and valve stem in order to turn the stem. We report in detail on our winning performance at the challenge and discuss lessons learned.</description><subject>Locomotion</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Repair &amp; maintenance</subject><subject>Robotics</subject><subject>Robots</subject><subject>Wrenches</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwCElNzFXwy8xNCspXSCxR8HWK8gxyVjAyMDS3UnAsLcnPy8_NLy1WCEvMKUtVCC5JzVUIKS3Ky8xLVygtBpGJCuFFqXnJGTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-Kx-oESgVb2RoaG5kbmJpZmhMnCoA6fM5kQ</recordid><startdate>20181006</startdate><enddate>20181006</enddate><creator>Schwarz, Max</creator><creator>Droeschel, David</creator><creator>Lenz, Christian</creator><creator>Arul Selvam Periyasamy</creator><creator>En Yen Puang</creator><creator>Razlaw, Jan</creator><creator>Rodriguez, Diego</creator><creator>Schüller, Sebastian</creator><creator>Schreiber, Michael</creator><creator>Behnke, Sven</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181006</creationdate><title>Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench</title><author>Schwarz, Max ; Droeschel, David ; Lenz, Christian ; Arul Selvam Periyasamy ; En Yen Puang ; Razlaw, Jan ; Rodriguez, Diego ; Schüller, Sebastian ; Schreiber, Michael ; Behnke, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21172749613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Locomotion</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Repair &amp; maintenance</topic><topic>Robotics</topic><topic>Robots</topic><topic>Wrenches</topic><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Max</creatorcontrib><creatorcontrib>Droeschel, David</creatorcontrib><creatorcontrib>Lenz, Christian</creatorcontrib><creatorcontrib>Arul Selvam Periyasamy</creatorcontrib><creatorcontrib>En Yen Puang</creatorcontrib><creatorcontrib>Razlaw, Jan</creatorcontrib><creatorcontrib>Rodriguez, Diego</creatorcontrib><creatorcontrib>Schüller, Sebastian</creatorcontrib><creatorcontrib>Schreiber, Michael</creatorcontrib><creatorcontrib>Behnke, Sven</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Max</au><au>Droeschel, David</au><au>Lenz, Christian</au><au>Arul Selvam Periyasamy</au><au>En Yen Puang</au><au>Razlaw, Jan</au><au>Rodriguez, Diego</au><au>Schüller, Sebastian</au><au>Schreiber, Michael</au><au>Behnke, Sven</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench</atitle><jtitle>arXiv.org</jtitle><date>2018-10-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state-of-the-art in autonomous operation of ground-based and flying robots. In this article, we describe our winning entry to MBZIRC Challenge 2: the mobile manipulation robot Mario. It is capable of autonomously solving a valve manipulation task using a wrench tool detected, grasped, and finally employed to turn a valve stem. Mario's omnidirectional base allows both fast locomotion and precise close approach to the manipulation panel. We describe an efficient detector for medium-sized objects in 3D laser scans and apply it to detect the manipulation panel. An object detection architecture based on deep neural networks is used to find and select the correct tool from grayscale images. Parametrized motion primitives are adapted online to percepts of the tool and valve stem in order to turn the stem. We report in detail on our winning performance at the challenge and discuss lessons learned.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2117274961
source Free E- Journals
subjects Locomotion
Neural networks
Object recognition
Repair & maintenance
Robotics
Robots
Wrenches
title Team NimbRo at MBZIRC 2017: Autonomous Valve Stem Turning using a Wrench
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Team%20NimbRo%20at%20MBZIRC%202017:%20Autonomous%20Valve%20Stem%20Turning%20using%20a%20Wrench&rft.jtitle=arXiv.org&rft.au=Schwarz,%20Max&rft.date=2018-10-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2117274961%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117274961&rft_id=info:pmid/&rfr_iscdi=true