Improving Chamfer Template Matching Using Image Segmentation

This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2018-11, Vol.25 (11), p.1635-1639
Hauptverfasser: Duc Thanh Nguyen, Ngoc-Son Vu, Thanh-Toan Do, Thin Nguyen, Yearwood, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1639
container_issue 11
container_start_page 1635
container_title IEEE signal processing letters
container_volume 25
creator Duc Thanh Nguyen
Ngoc-Son Vu
Thanh-Toan Do
Thin Nguyen
Yearwood, John
description This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic model. The proposed method was tested with state-of-the-art CTM-based object detectors. Experimental results have shown the proposed method improved the location accuracy of the object detectors and reduce the false alarms rate.
doi_str_mv 10.1109/LSP.2018.2862645
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117176849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8424505</ieee_id><sourcerecordid>2117176849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1db4c2eb770aab2f275df7b3812ac8d874b86cf11fc4e9a18cbff71cb171947e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wcuC562ZbLLJghcpPgoVhbbnkKSTdkt3tyar4L83S4uXmYH55sFHyC3QCQCtHuaLzwmjoCZMlazk4oyMQAiVs6KE81RTSfOqouqSXMW4o5QqUGJEHmfNIXQ_dbvJplvTeAzZEpvD3vSYvZvebYfOKg5x1pgNZgvcNNj2pq-79ppceLOPeHPKY7J6eV5O3_L5x-ts-jTPHaugz2FtuWNopaTGWOaZFGsvbaGAGafWSnKrSucBvONYGVDOei_BWZBQcYnFmNwf96ZXv74x9nrXfYc2ndQMEiRLxatE0SPlQhdjQK8PoW5M-NVA9eBIJ0d6cKRPjtLI3XGkRsR_XHHGBRXFH24bYmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176849</pqid></control><display><type>article</type><title>Improving Chamfer Template Matching Using Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Duc Thanh Nguyen ; Ngoc-Son Vu ; Thanh-Toan Do ; Thin Nguyen ; Yearwood, John</creator><creatorcontrib>Duc Thanh Nguyen ; Ngoc-Son Vu ; Thanh-Toan Do ; Thin Nguyen ; Yearwood, John</creatorcontrib><description>This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic model. The proposed method was tested with state-of-the-art CTM-based object detectors. Experimental results have shown the proposed method improved the location accuracy of the object detectors and reduce the false alarms rate.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2862645</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chamfer template matching (CTM) ; Chamfering ; Computational modeling ; Detectors ; False alarms ; Image detection ; Image edge detection ; Image segmentation ; Object detection ; Object recognition ; Optimization ; Probabilistic methods ; Probabilistic models ; Template matching ; Training</subject><ispartof>IEEE signal processing letters, 2018-11, Vol.25 (11), p.1635-1639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1db4c2eb770aab2f275df7b3812ac8d874b86cf11fc4e9a18cbff71cb171947e3</citedby><cites>FETCH-LOGICAL-c291t-1db4c2eb770aab2f275df7b3812ac8d874b86cf11fc4e9a18cbff71cb171947e3</cites><orcidid>0000-0003-3498-3335 ; 0000-0002-6249-0848 ; 0000-0002-2285-2066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8424505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8424505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duc Thanh Nguyen</creatorcontrib><creatorcontrib>Ngoc-Son Vu</creatorcontrib><creatorcontrib>Thanh-Toan Do</creatorcontrib><creatorcontrib>Thin Nguyen</creatorcontrib><creatorcontrib>Yearwood, John</creatorcontrib><title>Improving Chamfer Template Matching Using Image Segmentation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic model. The proposed method was tested with state-of-the-art CTM-based object detectors. Experimental results have shown the proposed method improved the location accuracy of the object detectors and reduce the false alarms rate.</description><subject>Chamfer template matching (CTM)</subject><subject>Chamfering</subject><subject>Computational modeling</subject><subject>Detectors</subject><subject>False alarms</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Probabilistic methods</subject><subject>Probabilistic models</subject><subject>Template matching</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wcuC562ZbLLJghcpPgoVhbbnkKSTdkt3tyar4L83S4uXmYH55sFHyC3QCQCtHuaLzwmjoCZMlazk4oyMQAiVs6KE81RTSfOqouqSXMW4o5QqUGJEHmfNIXQ_dbvJplvTeAzZEpvD3vSYvZvebYfOKg5x1pgNZgvcNNj2pq-79ppceLOPeHPKY7J6eV5O3_L5x-ts-jTPHaugz2FtuWNopaTGWOaZFGsvbaGAGafWSnKrSucBvONYGVDOei_BWZBQcYnFmNwf96ZXv74x9nrXfYc2ndQMEiRLxatE0SPlQhdjQK8PoW5M-NVA9eBIJ0d6cKRPjtLI3XGkRsR_XHHGBRXFH24bYmI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Duc Thanh Nguyen</creator><creator>Ngoc-Son Vu</creator><creator>Thanh-Toan Do</creator><creator>Thin Nguyen</creator><creator>Yearwood, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3498-3335</orcidid><orcidid>https://orcid.org/0000-0002-6249-0848</orcidid><orcidid>https://orcid.org/0000-0002-2285-2066</orcidid></search><sort><creationdate>20181101</creationdate><title>Improving Chamfer Template Matching Using Image Segmentation</title><author>Duc Thanh Nguyen ; Ngoc-Son Vu ; Thanh-Toan Do ; Thin Nguyen ; Yearwood, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1db4c2eb770aab2f275df7b3812ac8d874b86cf11fc4e9a18cbff71cb171947e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chamfer template matching (CTM)</topic><topic>Chamfering</topic><topic>Computational modeling</topic><topic>Detectors</topic><topic>False alarms</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Probabilistic methods</topic><topic>Probabilistic models</topic><topic>Template matching</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc Thanh Nguyen</creatorcontrib><creatorcontrib>Ngoc-Son Vu</creatorcontrib><creatorcontrib>Thanh-Toan Do</creatorcontrib><creatorcontrib>Thin Nguyen</creatorcontrib><creatorcontrib>Yearwood, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duc Thanh Nguyen</au><au>Ngoc-Son Vu</au><au>Thanh-Toan Do</au><au>Thin Nguyen</au><au>Yearwood, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Chamfer Template Matching Using Image Segmentation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>25</volume><issue>11</issue><spage>1635</spage><epage>1639</epage><pages>1635-1639</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic model. The proposed method was tested with state-of-the-art CTM-based object detectors. Experimental results have shown the proposed method improved the location accuracy of the object detectors and reduce the false alarms rate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2862645</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3498-3335</orcidid><orcidid>https://orcid.org/0000-0002-6249-0848</orcidid><orcidid>https://orcid.org/0000-0002-2285-2066</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-11, Vol.25 (11), p.1635-1639
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2117176849
source IEEE Electronic Library (IEL)
subjects Chamfer template matching (CTM)
Chamfering
Computational modeling
Detectors
False alarms
Image detection
Image edge detection
Image segmentation
Object detection
Object recognition
Optimization
Probabilistic methods
Probabilistic models
Template matching
Training
title Improving Chamfer Template Matching Using Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Chamfer%20Template%20Matching%20Using%20Image%20Segmentation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Duc%20Thanh%20Nguyen&rft.date=2018-11-01&rft.volume=25&rft.issue=11&rft.spage=1635&rft.epage=1639&rft.pages=1635-1639&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2862645&rft_dat=%3Cproquest_RIE%3E2117176849%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117176849&rft_id=info:pmid/&rft_ieee_id=8424505&rfr_iscdi=true