Improving Chamfer Template Matching Using Image Segmentation

This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2018-11, Vol.25 (11), p.1635-1639
Hauptverfasser: Duc Thanh Nguyen, Ngoc-Son Vu, Thanh-Toan Do, Thin Nguyen, Yearwood, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes an effective method to improve object location in Chamfer template matching (CTM) based object detection using image segmentation. In our method, object bounding boxes are iteratively adjusted to fit with the object images obtained from image segmentation in a probabilistic model. The proposed method was tested with state-of-the-art CTM-based object detectors. Experimental results have shown the proposed method improved the location accuracy of the object detectors and reduce the false alarms rate.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2018.2862645