Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery
We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising fr...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2018-10, Vol.15 (10), p.1520-1524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1524 |
---|---|
container_issue | 10 |
container_start_page | 1520 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Comite, D. Ahmad, F. Dogaru, T. Amin, M. G. |
description | We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance. |
doi_str_mv | 10.1109/LGRS.2018.2852684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117176747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8417956</ieee_id><sourcerecordid>2117176747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZ2yRN-jjUzUlB2Sb4FtL0tnS6ZqadY__elQ2f7nn4zrnwEXILbATA0odsOl-MYgZ6FGsZJ1qckQFIqSMmFZz3WchIpvrzkly17YqxWGitBuR1XNhNV_8ifcIOXVf7hvqSZn4XLeqqsd02IF3aUGHX0rqhEx92NhRR5v1X3VR0-j6ns7WtMOyvyUVpv1u8Od0h-Zg8Lx9fouxtOnscZ5GLU95Fae6wwFQILqF0OhbKoVM5A8sLYHligSnBE26t1hKdzRNeYFFwxrkVnFk-JPfH3U3wP1tsO7Py29AcXpoYQIFKlFAHCo6UC75tA5ZmE-q1DXsDzPTKTK_M9MrMSdmhc3fs1Ij4z2sBKpUJ_wMnBWdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176747</pqid></control><display><type>article</type><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</creator><creatorcontrib>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</creatorcontrib><description>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2852684</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive detection ; Clutter ; Detection ; Detectors ; False alarms ; forward-looking GPR (FL-GPR) ; Ground penetrating radar ; Image detection ; Imagery ; Interface roughness ; Land mines ; Light rail systems ; Likelihood ratio ; Medical imaging ; microwave imaging ; microwave tomography ; Position measurement ; Radar ; Radar detection ; Radar imaging ; Radar signatures ; Rough surfaces ; Roughness ; Statistical methods ; Surface roughness ; Target detection ; Target recognition ; terrain clutter ; Tomography</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1520-1524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</citedby><cites>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</cites><orcidid>0000-0002-0926-4120 ; 0000-0002-5080-3966 ; 0000-0002-1446-5154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8417956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8417956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Comite, D.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Dogaru, T.</creatorcontrib><creatorcontrib>Amin, M. G.</creatorcontrib><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</description><subject>Adaptive detection</subject><subject>Clutter</subject><subject>Detection</subject><subject>Detectors</subject><subject>False alarms</subject><subject>forward-looking GPR (FL-GPR)</subject><subject>Ground penetrating radar</subject><subject>Image detection</subject><subject>Imagery</subject><subject>Interface roughness</subject><subject>Land mines</subject><subject>Light rail systems</subject><subject>Likelihood ratio</subject><subject>Medical imaging</subject><subject>microwave imaging</subject><subject>microwave tomography</subject><subject>Position measurement</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radar signatures</subject><subject>Rough surfaces</subject><subject>Roughness</subject><subject>Statistical methods</subject><subject>Surface roughness</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>terrain clutter</subject><subject>Tomography</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZ2yRN-jjUzUlB2Sb4FtL0tnS6ZqadY__elQ2f7nn4zrnwEXILbATA0odsOl-MYgZ6FGsZJ1qckQFIqSMmFZz3WchIpvrzkly17YqxWGitBuR1XNhNV_8ifcIOXVf7hvqSZn4XLeqqsd02IF3aUGHX0rqhEx92NhRR5v1X3VR0-j6ns7WtMOyvyUVpv1u8Od0h-Zg8Lx9fouxtOnscZ5GLU95Fae6wwFQILqF0OhbKoVM5A8sLYHligSnBE26t1hKdzRNeYFFwxrkVnFk-JPfH3U3wP1tsO7Py29AcXpoYQIFKlFAHCo6UC75tA5ZmE-q1DXsDzPTKTK_M9MrMSdmhc3fs1Ij4z2sBKpUJ_wMnBWdF</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Comite, D.</creator><creator>Ahmad, F.</creator><creator>Dogaru, T.</creator><creator>Amin, M. G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0926-4120</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-1446-5154</orcidid></search><sort><creationdate>20181001</creationdate><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><author>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive detection</topic><topic>Clutter</topic><topic>Detection</topic><topic>Detectors</topic><topic>False alarms</topic><topic>forward-looking GPR (FL-GPR)</topic><topic>Ground penetrating radar</topic><topic>Image detection</topic><topic>Imagery</topic><topic>Interface roughness</topic><topic>Land mines</topic><topic>Light rail systems</topic><topic>Likelihood ratio</topic><topic>Medical imaging</topic><topic>microwave imaging</topic><topic>microwave tomography</topic><topic>Position measurement</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radar signatures</topic><topic>Rough surfaces</topic><topic>Roughness</topic><topic>Statistical methods</topic><topic>Surface roughness</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>terrain clutter</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comite, D.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Dogaru, T.</creatorcontrib><creatorcontrib>Amin, M. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Comite, D.</au><au>Ahmad, F.</au><au>Dogaru, T.</au><au>Amin, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>15</volume><issue>10</issue><spage>1520</spage><epage>1524</epage><pages>1520-1524</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2852684</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0926-4120</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-1446-5154</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1520-1524 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2117176747 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive detection Clutter Detection Detectors False alarms forward-looking GPR (FL-GPR) Ground penetrating radar Image detection Imagery Interface roughness Land mines Light rail systems Likelihood ratio Medical imaging microwave imaging microwave tomography Position measurement Radar Radar detection Radar imaging Radar signatures Rough surfaces Roughness Statistical methods Surface roughness Target detection Target recognition terrain clutter Tomography |
title | Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20of%20Low-Signature%20Targets%20in%20Forward-Looking%20GPR%20Imagery&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Comite,%20D.&rft.date=2018-10-01&rft.volume=15&rft.issue=10&rft.spage=1520&rft.epage=1524&rft.pages=1520-1524&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2852684&rft_dat=%3Cproquest_RIE%3E2117176747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117176747&rft_id=info:pmid/&rft_ieee_id=8417956&rfr_iscdi=true |