Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery

We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2018-10, Vol.15 (10), p.1520-1524
Hauptverfasser: Comite, D., Ahmad, F., Dogaru, T., Amin, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1524
container_issue 10
container_start_page 1520
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Comite, D.
Ahmad, F.
Dogaru, T.
Amin, M. G.
description We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.
doi_str_mv 10.1109/LGRS.2018.2852684
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117176747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8417956</ieee_id><sourcerecordid>2117176747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZ2yRN-jjUzUlB2Sb4FtL0tnS6ZqadY__elQ2f7nn4zrnwEXILbATA0odsOl-MYgZ6FGsZJ1qckQFIqSMmFZz3WchIpvrzkly17YqxWGitBuR1XNhNV_8ifcIOXVf7hvqSZn4XLeqqsd02IF3aUGHX0rqhEx92NhRR5v1X3VR0-j6ns7WtMOyvyUVpv1u8Od0h-Zg8Lx9fouxtOnscZ5GLU95Fae6wwFQILqF0OhbKoVM5A8sLYHligSnBE26t1hKdzRNeYFFwxrkVnFk-JPfH3U3wP1tsO7Py29AcXpoYQIFKlFAHCo6UC75tA5ZmE-q1DXsDzPTKTK_M9MrMSdmhc3fs1Ij4z2sBKpUJ_wMnBWdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176747</pqid></control><display><type>article</type><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</creator><creatorcontrib>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</creatorcontrib><description>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2852684</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive detection ; Clutter ; Detection ; Detectors ; False alarms ; forward-looking GPR (FL-GPR) ; Ground penetrating radar ; Image detection ; Imagery ; Interface roughness ; Land mines ; Light rail systems ; Likelihood ratio ; Medical imaging ; microwave imaging ; microwave tomography ; Position measurement ; Radar ; Radar detection ; Radar imaging ; Radar signatures ; Rough surfaces ; Roughness ; Statistical methods ; Surface roughness ; Target detection ; Target recognition ; terrain clutter ; Tomography</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1520-1524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</citedby><cites>FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</cites><orcidid>0000-0002-0926-4120 ; 0000-0002-5080-3966 ; 0000-0002-1446-5154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8417956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8417956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Comite, D.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Dogaru, T.</creatorcontrib><creatorcontrib>Amin, M. G.</creatorcontrib><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</description><subject>Adaptive detection</subject><subject>Clutter</subject><subject>Detection</subject><subject>Detectors</subject><subject>False alarms</subject><subject>forward-looking GPR (FL-GPR)</subject><subject>Ground penetrating radar</subject><subject>Image detection</subject><subject>Imagery</subject><subject>Interface roughness</subject><subject>Land mines</subject><subject>Light rail systems</subject><subject>Likelihood ratio</subject><subject>Medical imaging</subject><subject>microwave imaging</subject><subject>microwave tomography</subject><subject>Position measurement</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radar signatures</subject><subject>Rough surfaces</subject><subject>Roughness</subject><subject>Statistical methods</subject><subject>Surface roughness</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>terrain clutter</subject><subject>Tomography</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZ2yRN-jjUzUlB2Sb4FtL0tnS6ZqadY__elQ2f7nn4zrnwEXILbATA0odsOl-MYgZ6FGsZJ1qckQFIqSMmFZz3WchIpvrzkly17YqxWGitBuR1XNhNV_8ifcIOXVf7hvqSZn4XLeqqsd02IF3aUGHX0rqhEx92NhRR5v1X3VR0-j6ns7WtMOyvyUVpv1u8Od0h-Zg8Lx9fouxtOnscZ5GLU95Fae6wwFQILqF0OhbKoVM5A8sLYHligSnBE26t1hKdzRNeYFFwxrkVnFk-JPfH3U3wP1tsO7Py29AcXpoYQIFKlFAHCo6UC75tA5ZmE-q1DXsDzPTKTK_M9MrMSdmhc3fs1Ij4z2sBKpUJ_wMnBWdF</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Comite, D.</creator><creator>Ahmad, F.</creator><creator>Dogaru, T.</creator><creator>Amin, M. G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0926-4120</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-1446-5154</orcidid></search><sort><creationdate>20181001</creationdate><title>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</title><author>Comite, D. ; Ahmad, F. ; Dogaru, T. ; Amin, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9bcede944351fc8247cec7b01a3d10b6a1074363aa885ecab63dedd3033a430a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive detection</topic><topic>Clutter</topic><topic>Detection</topic><topic>Detectors</topic><topic>False alarms</topic><topic>forward-looking GPR (FL-GPR)</topic><topic>Ground penetrating radar</topic><topic>Image detection</topic><topic>Imagery</topic><topic>Interface roughness</topic><topic>Land mines</topic><topic>Light rail systems</topic><topic>Likelihood ratio</topic><topic>Medical imaging</topic><topic>microwave imaging</topic><topic>microwave tomography</topic><topic>Position measurement</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radar signatures</topic><topic>Rough surfaces</topic><topic>Roughness</topic><topic>Statistical methods</topic><topic>Surface roughness</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>terrain clutter</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comite, D.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Dogaru, T.</creatorcontrib><creatorcontrib>Amin, M. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Comite, D.</au><au>Ahmad, F.</au><au>Dogaru, T.</au><au>Amin, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>15</volume><issue>10</issue><spage>1520</spage><epage>1524</epage><pages>1520-1524</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We present an image-domain adaptive likelihood ratio tests (LRT) detector for low-signature target detection in forward-looking ground-penetrating radar. We exploit multiview tomographic images of the scene under investigation to iteratively adapt the statistics of the targets and clutter arising from the interface roughness. Using numerical electromagnetic data, it is shown that the proposed adaptive LRT detector provides significantly lower false-alarm rates compared with its nonadaptive counterpart while providing comparable detection performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2852684</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0926-4120</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-1446-5154</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1520-1524
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2117176747
source IEEE Electronic Library (IEL)
subjects Adaptive detection
Clutter
Detection
Detectors
False alarms
forward-looking GPR (FL-GPR)
Ground penetrating radar
Image detection
Imagery
Interface roughness
Land mines
Light rail systems
Likelihood ratio
Medical imaging
microwave imaging
microwave tomography
Position measurement
Radar
Radar detection
Radar imaging
Radar signatures
Rough surfaces
Roughness
Statistical methods
Surface roughness
Target detection
Target recognition
terrain clutter
Tomography
title Adaptive Detection of Low-Signature Targets in Forward-Looking GPR Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20of%20Low-Signature%20Targets%20in%20Forward-Looking%20GPR%20Imagery&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Comite,%20D.&rft.date=2018-10-01&rft.volume=15&rft.issue=10&rft.spage=1520&rft.epage=1524&rft.pages=1520-1524&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2852684&rft_dat=%3Cproquest_RIE%3E2117176747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117176747&rft_id=info:pmid/&rft_ieee_id=8417956&rfr_iscdi=true