Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads
In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2018-09, Vol.54 (5), p.4682-4695 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4695 |
---|---|
container_issue | 5 |
container_start_page | 4682 |
container_title | IEEE transactions on industry applications |
container_volume | 54 |
creator | Ravi, Vaishnavi Lakshminarasamma, N. |
description | In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads. |
doi_str_mv | 10.1109/TIA.2018.2838547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117169273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8361500</ieee_id><sourcerecordid>2117169273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAa7fmazfJsRRrCxVFqteQ3Z2tW7ebmmxb-u9NafEyA8PzvjAPQveUDCkl-mkxGw0ZoWrIFFepkBeoRzXXieaZvEQ9QjRPtNbiGt2EsCKEipSKHlq9uhKaul0O8Ki1zSHUYYBtW-LZetPAGtrOdrVrsavwtF5-4y_XdHYJeO72-N3tweNJc8ht8YPHrt2B744XgDI24g-IbV29O9K2DLfoqrJNgLvz7qPPyfNiPE3mby-z8WieFEzTLk4lqFKSFYLrTFjOpFY2tbmuUkhZVUEFjElLieSp5oSVhcgh_qxlkZeZ5H30eOrdePe7hdCZldv6-FwwjFJJM80kjxQ5UYV3IXiozMbXa-sPhhJzNGqiUXM0as5GY-ThFKkB4B9XPKMpIfwPXHFxSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117169273</pqid></control><display><type>article</type><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Ravi, Vaishnavi ; Lakshminarasamma, N.</creator><creatorcontrib>Ravi, Vaishnavi ; Lakshminarasamma, N.</creatorcontrib><description>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2838547</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Computer simulation ; Converters ; Electric potential ; Energy transfer ; Feeding ; Flyback ; high voltage ; High voltages ; Load modeling ; Loads (forces) ; Mathematical models ; MOSFET ; Parasitic capacitance ; resistive loads ; resonance ; Steady-state ; Switching ; transformer parasitics ; voltage gain ; Zero voltage switching ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on industry applications, 2018-09, Vol.54 (5), p.4682-4695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</citedby><cites>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</cites><orcidid>0000-0002-0445-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8361500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8361500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ravi, Vaishnavi</creatorcontrib><creatorcontrib>Lakshminarasamma, N.</creatorcontrib><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</description><subject>Analytical models</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Electric potential</subject><subject>Energy transfer</subject><subject>Feeding</subject><subject>Flyback</subject><subject>high voltage</subject><subject>High voltages</subject><subject>Load modeling</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>MOSFET</subject><subject>Parasitic capacitance</subject><subject>resistive loads</subject><subject>resonance</subject><subject>Steady-state</subject><subject>Switching</subject><subject>transformer parasitics</subject><subject>voltage gain</subject><subject>Zero voltage switching</subject><subject>zero-voltage switching (ZVS)</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAa7fmazfJsRRrCxVFqteQ3Z2tW7ebmmxb-u9NafEyA8PzvjAPQveUDCkl-mkxGw0ZoWrIFFepkBeoRzXXieaZvEQ9QjRPtNbiGt2EsCKEipSKHlq9uhKaul0O8Ki1zSHUYYBtW-LZetPAGtrOdrVrsavwtF5-4y_XdHYJeO72-N3tweNJc8ht8YPHrt2B744XgDI24g-IbV29O9K2DLfoqrJNgLvz7qPPyfNiPE3mby-z8WieFEzTLk4lqFKSFYLrTFjOpFY2tbmuUkhZVUEFjElLieSp5oSVhcgh_qxlkZeZ5H30eOrdePe7hdCZldv6-FwwjFJJM80kjxQ5UYV3IXiozMbXa-sPhhJzNGqiUXM0as5GY-ThFKkB4B9XPKMpIfwPXHFxSA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Ravi, Vaishnavi</creator><creator>Lakshminarasamma, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0445-0602</orcidid></search><sort><creationdate>201809</creationdate><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><author>Ravi, Vaishnavi ; Lakshminarasamma, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Electric potential</topic><topic>Energy transfer</topic><topic>Feeding</topic><topic>Flyback</topic><topic>high voltage</topic><topic>High voltages</topic><topic>Load modeling</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>MOSFET</topic><topic>Parasitic capacitance</topic><topic>resistive loads</topic><topic>resonance</topic><topic>Steady-state</topic><topic>Switching</topic><topic>transformer parasitics</topic><topic>voltage gain</topic><topic>Zero voltage switching</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Vaishnavi</creatorcontrib><creatorcontrib>Lakshminarasamma, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravi, Vaishnavi</au><au>Lakshminarasamma, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-09</date><risdate>2018</risdate><volume>54</volume><issue>5</issue><spage>4682</spage><epage>4695</epage><pages>4682-4695</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2838547</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0445-0602</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2018-09, Vol.54 (5), p.4682-4695 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2117169273 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Computer simulation Converters Electric potential Energy transfer Feeding Flyback high voltage High voltages Load modeling Loads (forces) Mathematical models MOSFET Parasitic capacitance resistive loads resonance Steady-state Switching transformer parasitics voltage gain Zero voltage switching zero-voltage switching (ZVS) |
title | Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling,%20Analysis,%20and%20Implementation%20of%20High%20Voltage%20Low%20Power%20Flyback%20Converter%20Feeding%20Resistive%20Loads&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Ravi,%20Vaishnavi&rft.date=2018-09&rft.volume=54&rft.issue=5&rft.spage=4682&rft.epage=4695&rft.pages=4682-4695&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2838547&rft_dat=%3Cproquest_RIE%3E2117169273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117169273&rft_id=info:pmid/&rft_ieee_id=8361500&rfr_iscdi=true |