Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads

In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-09, Vol.54 (5), p.4682-4695
Hauptverfasser: Ravi, Vaishnavi, Lakshminarasamma, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4695
container_issue 5
container_start_page 4682
container_title IEEE transactions on industry applications
container_volume 54
creator Ravi, Vaishnavi
Lakshminarasamma, N.
description In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.
doi_str_mv 10.1109/TIA.2018.2838547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117169273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8361500</ieee_id><sourcerecordid>2117169273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAa7fmazfJsRRrCxVFqteQ3Z2tW7ebmmxb-u9NafEyA8PzvjAPQveUDCkl-mkxGw0ZoWrIFFepkBeoRzXXieaZvEQ9QjRPtNbiGt2EsCKEipSKHlq9uhKaul0O8Ki1zSHUYYBtW-LZetPAGtrOdrVrsavwtF5-4y_XdHYJeO72-N3tweNJc8ht8YPHrt2B744XgDI24g-IbV29O9K2DLfoqrJNgLvz7qPPyfNiPE3mby-z8WieFEzTLk4lqFKSFYLrTFjOpFY2tbmuUkhZVUEFjElLieSp5oSVhcgh_qxlkZeZ5H30eOrdePe7hdCZldv6-FwwjFJJM80kjxQ5UYV3IXiozMbXa-sPhhJzNGqiUXM0as5GY-ThFKkB4B9XPKMpIfwPXHFxSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117169273</pqid></control><display><type>article</type><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Ravi, Vaishnavi ; Lakshminarasamma, N.</creator><creatorcontrib>Ravi, Vaishnavi ; Lakshminarasamma, N.</creatorcontrib><description>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2838547</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Computer simulation ; Converters ; Electric potential ; Energy transfer ; Feeding ; Flyback ; high voltage ; High voltages ; Load modeling ; Loads (forces) ; Mathematical models ; MOSFET ; Parasitic capacitance ; resistive loads ; resonance ; Steady-state ; Switching ; transformer parasitics ; voltage gain ; Zero voltage switching ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on industry applications, 2018-09, Vol.54 (5), p.4682-4695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</citedby><cites>FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</cites><orcidid>0000-0002-0445-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8361500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8361500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ravi, Vaishnavi</creatorcontrib><creatorcontrib>Lakshminarasamma, N.</creatorcontrib><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</description><subject>Analytical models</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Electric potential</subject><subject>Energy transfer</subject><subject>Feeding</subject><subject>Flyback</subject><subject>high voltage</subject><subject>High voltages</subject><subject>Load modeling</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>MOSFET</subject><subject>Parasitic capacitance</subject><subject>resistive loads</subject><subject>resonance</subject><subject>Steady-state</subject><subject>Switching</subject><subject>transformer parasitics</subject><subject>voltage gain</subject><subject>Zero voltage switching</subject><subject>zero-voltage switching (ZVS)</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAa7fmazfJsRRrCxVFqteQ3Z2tW7ebmmxb-u9NafEyA8PzvjAPQveUDCkl-mkxGw0ZoWrIFFepkBeoRzXXieaZvEQ9QjRPtNbiGt2EsCKEipSKHlq9uhKaul0O8Ki1zSHUYYBtW-LZetPAGtrOdrVrsavwtF5-4y_XdHYJeO72-N3tweNJc8ht8YPHrt2B744XgDI24g-IbV29O9K2DLfoqrJNgLvz7qPPyfNiPE3mby-z8WieFEzTLk4lqFKSFYLrTFjOpFY2tbmuUkhZVUEFjElLieSp5oSVhcgh_qxlkZeZ5H30eOrdePe7hdCZldv6-FwwjFJJM80kjxQ5UYV3IXiozMbXa-sPhhJzNGqiUXM0as5GY-ThFKkB4B9XPKMpIfwPXHFxSA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Ravi, Vaishnavi</creator><creator>Lakshminarasamma, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0445-0602</orcidid></search><sort><creationdate>201809</creationdate><title>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</title><author>Ravi, Vaishnavi ; Lakshminarasamma, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c28418872c43964a32798a5ab9f5e52ffefe227a107359302dc4be38597cbd673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Electric potential</topic><topic>Energy transfer</topic><topic>Feeding</topic><topic>Flyback</topic><topic>high voltage</topic><topic>High voltages</topic><topic>Load modeling</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>MOSFET</topic><topic>Parasitic capacitance</topic><topic>resistive loads</topic><topic>resonance</topic><topic>Steady-state</topic><topic>Switching</topic><topic>transformer parasitics</topic><topic>voltage gain</topic><topic>Zero voltage switching</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Vaishnavi</creatorcontrib><creatorcontrib>Lakshminarasamma, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravi, Vaishnavi</au><au>Lakshminarasamma, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-09</date><risdate>2018</risdate><volume>54</volume><issue>5</issue><spage>4682</spage><epage>4695</epage><pages>4682-4695</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In High Voltage flyback converters, the dominant factor that influences a converter operation is the parasitic capacitance. A significant portion of input energy is utilized in charging the parasitic capacitances of the circuit, which is circulated back to the source at the end of every switching cycle. The circulating energy is a function of output voltage, load power, and parasitic capacitances and remains significant in High Voltage Low Power (HVLP) applications. This energy transfer phenomenon involving parasitic capacitances results in a reduced fraction of input energy reaching the load in every cycle, thereby resulting in an apparent deviation in the converter operating point compared to ideal flyback in case of resistive loads. An analytical energy-based model is derived, which includes the effect of parasitic capacitances, and is valid for steady state and dynamics of HVLP flyback converters feeding resistive loads. The influence of parasitic capacitances on the switch voltage of the converter is exploited to achieve Zero Voltage Switching (ZVS), thereby minimizing the turn- on loss. The proposed analytical model is verified through simulation and experimental results on 1.5 kV/ 5 W and 1.5 kV/ 200 mW resistive loads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2838547</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0445-0602</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2018-09, Vol.54 (5), p.4682-4695
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2117169273
source IEEE Electronic Library (IEL)
subjects Analytical models
Computer simulation
Converters
Electric potential
Energy transfer
Feeding
Flyback
high voltage
High voltages
Load modeling
Loads (forces)
Mathematical models
MOSFET
Parasitic capacitance
resistive loads
resonance
Steady-state
Switching
transformer parasitics
voltage gain
Zero voltage switching
zero-voltage switching (ZVS)
title Modeling, Analysis, and Implementation of High Voltage Low Power Flyback Converter Feeding Resistive Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling,%20Analysis,%20and%20Implementation%20of%20High%20Voltage%20Low%20Power%20Flyback%20Converter%20Feeding%20Resistive%20Loads&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Ravi,%20Vaishnavi&rft.date=2018-09&rft.volume=54&rft.issue=5&rft.spage=4682&rft.epage=4695&rft.pages=4682-4695&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2838547&rft_dat=%3Cproquest_RIE%3E2117169273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117169273&rft_id=info:pmid/&rft_ieee_id=8361500&rfr_iscdi=true