Preparation and Properties of MgB2 Thin Films

The superconducting transition temperature of 140 nm ± 10 nm thin films on sapphire substrates, which were deposited by magnetron sputtering, was around 36 K. Using a magnetization technique, the film's critical current density was estimated as J C = 1.8 × 10 7 A/cm 2 at 10 K, J C = 8 × 10 6 A/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2018-10, Vol.28 (7), p.1-7
Hauptverfasser: Prikhna, Tatiana A., Eisterer, Michael, Shaternik, Anton V., Shaternik, Volodymyr E., Seidel, Paul, Sokolovsky, Vladimir, Moshchil, Viktor E., Shapovalov, Andrii P., Romaka, Vitaliy V., Kovylaev, Valeriy V., Ponomaryov, Semyon S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 7
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 28
creator Prikhna, Tatiana A.
Eisterer, Michael
Shaternik, Anton V.
Shaternik, Volodymyr E.
Seidel, Paul
Sokolovsky, Vladimir
Moshchil, Viktor E.
Shapovalov, Andrii P.
Romaka, Vitaliy V.
Kovylaev, Valeriy V.
Ponomaryov, Semyon S.
description The superconducting transition temperature of 140 nm ± 10 nm thin films on sapphire substrates, which were deposited by magnetron sputtering, was around 36 K. Using a magnetization technique, the film's critical current density was estimated as J C = 1.8 × 10 7 A/cm 2 at 10 K, J C = 8 × 10 6 A/m 2 at 20 K in a zero magnetic field B, and J C = 3 × 10 6 A/m 2 at 10 K and B = 5 T. The values of the upper critical magnetic field B c2 and the irreversibility field B irr estimated using the four-probe technique were B C2 (22 K) = 15 T when H||film surface, 11 T when H⊥film surface, and B irr (22 K) = 11 T when H||film surface. The X-ray study showed that the microstructure of the film contains only MgB 2 and MgO (in minority). The SEM and EPXMA study and quantitative Auger spectroscopy analysis revealed periodical variations of the film composition on the nanolevel and the presence of (mainly) two intercalated Mg-B-O-C phases of slightly different, especially in oxygen content, and thus with different conductivity and, possibly, with different T C . The characteristics of superconducting magnesium diboride films make them promising for application in electronic devices, e.g., as high-pass filters.
doi_str_mv 10.1109/TASC.2018.2844357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117153070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8373706</ieee_id><sourcerecordid>2117153070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-409643a0263984d283f8dea985b17665af1261f7c2da0458d7e6d77df15c95a83</originalsourceid><addsrcrecordid>eNotjUFLwzAYhoMoOKc_QLwUPLd-X5IvSY-zOBUmDqznEpdUM7a2Jt3Bf7_CPD3v4eF9GLtFKBChfKgXH1XBAU3BjZSC9BmbIZHJOSGdTxsIc8O5uGRXKW0BUBpJM5avox9stGPou8x2LlvHfvBxDD5lfZu9fT_yrP4JXbYMu326Zhet3SV_8885-1w-1dVLvnp_fq0WqzxwEGMuoVRSWOBKlEY6bkRrnLeloS_USpFtkSts9YY7C5KM0145rV2LtCnJGjFn96ffIfa_B5_GZtsfYjclG46okQRomKy7kxW8980Qw97Gv8YILTQocQSTYUuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117153070</pqid></control><display><type>article</type><title>Preparation and Properties of MgB2 Thin Films</title><source>IEEE Electronic Library (IEL)</source><creator>Prikhna, Tatiana A. ; Eisterer, Michael ; Shaternik, Anton V. ; Shaternik, Volodymyr E. ; Seidel, Paul ; Sokolovsky, Vladimir ; Moshchil, Viktor E. ; Shapovalov, Andrii P. ; Romaka, Vitaliy V. ; Kovylaev, Valeriy V. ; Ponomaryov, Semyon S.</creator><creatorcontrib>Prikhna, Tatiana A. ; Eisterer, Michael ; Shaternik, Anton V. ; Shaternik, Volodymyr E. ; Seidel, Paul ; Sokolovsky, Vladimir ; Moshchil, Viktor E. ; Shapovalov, Andrii P. ; Romaka, Vitaliy V. ; Kovylaev, Valeriy V. ; Ponomaryov, Semyon S.</creatorcontrib><description>The superconducting transition temperature of 140 nm ± 10 nm thin films on sapphire substrates, which were deposited by magnetron sputtering, was around 36 K. Using a magnetization technique, the film's critical current density was estimated as J C = 1.8 × 10 7 A/cm 2 at 10 K, J C = 8 × 10 6 A/m 2 at 20 K in a zero magnetic field B, and J C = 3 × 10 6 A/m 2 at 10 K and B = 5 T. The values of the upper critical magnetic field B c2 and the irreversibility field B irr estimated using the four-probe technique were B C2 (22 K) = 15 T when H||film surface, 11 T when H⊥film surface, and B irr (22 K) = 11 T when H||film surface. The X-ray study showed that the microstructure of the film contains only MgB 2 and MgO (in minority). The SEM and EPXMA study and quantitative Auger spectroscopy analysis revealed periodical variations of the film composition on the nanolevel and the presence of (mainly) two intercalated Mg-B-O-C phases of slightly different, especially in oxygen content, and thus with different conductivity and, possibly, with different T C . The characteristics of superconducting magnesium diboride films make them promising for application in electronic devices, e.g., as high-pass filters.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2844357</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Auger spectroscopy ; Borides ; Critical current density ; Critical current density (superconductivity) ; Electronic devices ; field of irreversibility ; High pass filters ; High-temperature superconductors ; Magnesium ; Magnesium compounds ; Magnetic fields ; Magnetism ; Magnetron sputtering ; Oxygen content ; Sapphire ; Sputtering ; Substrates ; Superconducting filters ; Superconducting magnets ; Superconducting thin films ; Superconductivity ; Thin films ; Transition temperature ; upper critical field</subject><ispartof>IEEE transactions on applied superconductivity, 2018-10, Vol.28 (7), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8373706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8373706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prikhna, Tatiana A.</creatorcontrib><creatorcontrib>Eisterer, Michael</creatorcontrib><creatorcontrib>Shaternik, Anton V.</creatorcontrib><creatorcontrib>Shaternik, Volodymyr E.</creatorcontrib><creatorcontrib>Seidel, Paul</creatorcontrib><creatorcontrib>Sokolovsky, Vladimir</creatorcontrib><creatorcontrib>Moshchil, Viktor E.</creatorcontrib><creatorcontrib>Shapovalov, Andrii P.</creatorcontrib><creatorcontrib>Romaka, Vitaliy V.</creatorcontrib><creatorcontrib>Kovylaev, Valeriy V.</creatorcontrib><creatorcontrib>Ponomaryov, Semyon S.</creatorcontrib><title>Preparation and Properties of MgB2 Thin Films</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The superconducting transition temperature of 140 nm ± 10 nm thin films on sapphire substrates, which were deposited by magnetron sputtering, was around 36 K. Using a magnetization technique, the film's critical current density was estimated as J C = 1.8 × 10 7 A/cm 2 at 10 K, J C = 8 × 10 6 A/m 2 at 20 K in a zero magnetic field B, and J C = 3 × 10 6 A/m 2 at 10 K and B = 5 T. The values of the upper critical magnetic field B c2 and the irreversibility field B irr estimated using the four-probe technique were B C2 (22 K) = 15 T when H||film surface, 11 T when H⊥film surface, and B irr (22 K) = 11 T when H||film surface. The X-ray study showed that the microstructure of the film contains only MgB 2 and MgO (in minority). The SEM and EPXMA study and quantitative Auger spectroscopy analysis revealed periodical variations of the film composition on the nanolevel and the presence of (mainly) two intercalated Mg-B-O-C phases of slightly different, especially in oxygen content, and thus with different conductivity and, possibly, with different T C . The characteristics of superconducting magnesium diboride films make them promising for application in electronic devices, e.g., as high-pass filters.</description><subject>Auger spectroscopy</subject><subject>Borides</subject><subject>Critical current density</subject><subject>Critical current density (superconductivity)</subject><subject>Electronic devices</subject><subject>field of irreversibility</subject><subject>High pass filters</subject><subject>High-temperature superconductors</subject><subject>Magnesium</subject><subject>Magnesium compounds</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetron sputtering</subject><subject>Oxygen content</subject><subject>Sapphire</subject><subject>Sputtering</subject><subject>Substrates</subject><subject>Superconducting filters</subject><subject>Superconducting magnets</subject><subject>Superconducting thin films</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Transition temperature</subject><subject>upper critical field</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUFLwzAYhoMoOKc_QLwUPLd-X5IvSY-zOBUmDqznEpdUM7a2Jt3Bf7_CPD3v4eF9GLtFKBChfKgXH1XBAU3BjZSC9BmbIZHJOSGdTxsIc8O5uGRXKW0BUBpJM5avox9stGPou8x2LlvHfvBxDD5lfZu9fT_yrP4JXbYMu326Zhet3SV_8885-1w-1dVLvnp_fq0WqzxwEGMuoVRSWOBKlEY6bkRrnLeloS_USpFtkSts9YY7C5KM0145rV2LtCnJGjFn96ffIfa_B5_GZtsfYjclG46okQRomKy7kxW8980Qw97Gv8YILTQocQSTYUuk</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Prikhna, Tatiana A.</creator><creator>Eisterer, Michael</creator><creator>Shaternik, Anton V.</creator><creator>Shaternik, Volodymyr E.</creator><creator>Seidel, Paul</creator><creator>Sokolovsky, Vladimir</creator><creator>Moshchil, Viktor E.</creator><creator>Shapovalov, Andrii P.</creator><creator>Romaka, Vitaliy V.</creator><creator>Kovylaev, Valeriy V.</creator><creator>Ponomaryov, Semyon S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20181001</creationdate><title>Preparation and Properties of MgB2 Thin Films</title><author>Prikhna, Tatiana A. ; Eisterer, Michael ; Shaternik, Anton V. ; Shaternik, Volodymyr E. ; Seidel, Paul ; Sokolovsky, Vladimir ; Moshchil, Viktor E. ; Shapovalov, Andrii P. ; Romaka, Vitaliy V. ; Kovylaev, Valeriy V. ; Ponomaryov, Semyon S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-409643a0263984d283f8dea985b17665af1261f7c2da0458d7e6d77df15c95a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Auger spectroscopy</topic><topic>Borides</topic><topic>Critical current density</topic><topic>Critical current density (superconductivity)</topic><topic>Electronic devices</topic><topic>field of irreversibility</topic><topic>High pass filters</topic><topic>High-temperature superconductors</topic><topic>Magnesium</topic><topic>Magnesium compounds</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetron sputtering</topic><topic>Oxygen content</topic><topic>Sapphire</topic><topic>Sputtering</topic><topic>Substrates</topic><topic>Superconducting filters</topic><topic>Superconducting magnets</topic><topic>Superconducting thin films</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Transition temperature</topic><topic>upper critical field</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prikhna, Tatiana A.</creatorcontrib><creatorcontrib>Eisterer, Michael</creatorcontrib><creatorcontrib>Shaternik, Anton V.</creatorcontrib><creatorcontrib>Shaternik, Volodymyr E.</creatorcontrib><creatorcontrib>Seidel, Paul</creatorcontrib><creatorcontrib>Sokolovsky, Vladimir</creatorcontrib><creatorcontrib>Moshchil, Viktor E.</creatorcontrib><creatorcontrib>Shapovalov, Andrii P.</creatorcontrib><creatorcontrib>Romaka, Vitaliy V.</creatorcontrib><creatorcontrib>Kovylaev, Valeriy V.</creatorcontrib><creatorcontrib>Ponomaryov, Semyon S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prikhna, Tatiana A.</au><au>Eisterer, Michael</au><au>Shaternik, Anton V.</au><au>Shaternik, Volodymyr E.</au><au>Seidel, Paul</au><au>Sokolovsky, Vladimir</au><au>Moshchil, Viktor E.</au><au>Shapovalov, Andrii P.</au><au>Romaka, Vitaliy V.</au><au>Kovylaev, Valeriy V.</au><au>Ponomaryov, Semyon S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Properties of MgB2 Thin Films</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>28</volume><issue>7</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The superconducting transition temperature of 140 nm ± 10 nm thin films on sapphire substrates, which were deposited by magnetron sputtering, was around 36 K. Using a magnetization technique, the film's critical current density was estimated as J C = 1.8 × 10 7 A/cm 2 at 10 K, J C = 8 × 10 6 A/m 2 at 20 K in a zero magnetic field B, and J C = 3 × 10 6 A/m 2 at 10 K and B = 5 T. The values of the upper critical magnetic field B c2 and the irreversibility field B irr estimated using the four-probe technique were B C2 (22 K) = 15 T when H||film surface, 11 T when H⊥film surface, and B irr (22 K) = 11 T when H||film surface. The X-ray study showed that the microstructure of the film contains only MgB 2 and MgO (in minority). The SEM and EPXMA study and quantitative Auger spectroscopy analysis revealed periodical variations of the film composition on the nanolevel and the presence of (mainly) two intercalated Mg-B-O-C phases of slightly different, especially in oxygen content, and thus with different conductivity and, possibly, with different T C . The characteristics of superconducting magnesium diboride films make them promising for application in electronic devices, e.g., as high-pass filters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2018.2844357</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2018-10, Vol.28 (7), p.1-7
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2117153070
source IEEE Electronic Library (IEL)
subjects Auger spectroscopy
Borides
Critical current density
Critical current density (superconductivity)
Electronic devices
field of irreversibility
High pass filters
High-temperature superconductors
Magnesium
Magnesium compounds
Magnetic fields
Magnetism
Magnetron sputtering
Oxygen content
Sapphire
Sputtering
Substrates
Superconducting filters
Superconducting magnets
Superconducting thin films
Superconductivity
Thin films
Transition temperature
upper critical field
title Preparation and Properties of MgB2 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Properties%20of%20MgB2%20Thin%20Films&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Prikhna,%20Tatiana%20A.&rft.date=2018-10-01&rft.volume=28&rft.issue=7&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2844357&rft_dat=%3Cproquest_RIE%3E2117153070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117153070&rft_id=info:pmid/&rft_ieee_id=8373706&rfr_iscdi=true