From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries
Room‐temperature rechargeable sodium‐ion batteries appear to be promising alternatives for grid and other storage applications to lithium‐ion batteries because of the natural abundance, low cost, and environmental benignity of sodium. In response to the ever‐increasing development for these technolo...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2018-10, Vol.5 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 5 |
creator | Wei, Zhixuan Wang, Dongxue Yang, Xu Wang, Chunzhong Chen, Gang Du, Fei |
description | Room‐temperature rechargeable sodium‐ion batteries appear to be promising alternatives for grid and other storage applications to lithium‐ion batteries because of the natural abundance, low cost, and environmental benignity of sodium. In response to the ever‐increasing development for these technologies, an intensive exploration for appropriate electrode materials with high energy density is still underway. This Progress Report highlights the recent research in the investigation of amorphous materials, whose isotropic physical and chemical properties can provide multiple pathways for ions and facilitate ion diffusion. This Progress Report focuses on sodium‐ion batteries, but it is hoped that the engineering strategies may provide guidance on further research and design of functional materials for both sodium and potassium‐ion batteries.
Amorphous materials appear to be promising energy storage materials for room‐temperature rechargeable sodium‐ion batteries. The recent progress in this field is discussed in this progress report, both in cathode and anode electrodes. The isotropic physical and chemical properties resulting from the unique long‐range disordered and short‐range ordered structure of amorphous materials can provide various advantages for ion diffusion. |
doi_str_mv | 10.1002/admi.201800639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117151592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117151592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3569-ec3b33c870ced1e3e88b8b69218419865deb91af6074d3d9222524aaf356a0e73</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURoMoWGq3rgdcp85Pk8y4izW1hRYFdT1Mkps2JcnUmaTSXR_BZ_RJnFpRd67uhe-ce-HzvEuChwRjeq3yuhxSTDjGIRMnXo8SEfoRC_Dpn_3cG1i7xhgTQgnlrOftJ0bXaGx2tlVVVTaAWo3iWpvNSnf2BsUNSooCsrbcAoq30HRfRNIsHQsGTcvl6mP__gim0KZWTQYoqRxudA5ooVowpaosciF60nnZ1Q6e6QbdqvaQgb3wzgpHwOB79r2XSfI8nvrzh_vZOJ77GQtC4UPGUsYyHuEMcgIMOE95GgpK-IgIHgY5pIKoIsTRKGe5oJQGdKRU4WyFIWJ97-p4d2P0awe2lWvdmca9lJSQiAQkENRRwyOVGW2tgUJuTFkrs5MEy0PR8lC0_CnaCeIovJUV7P6hZXy3mP26n-dIhHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117151592</pqid></control><display><type>article</type><title>From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Wei, Zhixuan ; Wang, Dongxue ; Yang, Xu ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creator><creatorcontrib>Wei, Zhixuan ; Wang, Dongxue ; Yang, Xu ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creatorcontrib><description>Room‐temperature rechargeable sodium‐ion batteries appear to be promising alternatives for grid and other storage applications to lithium‐ion batteries because of the natural abundance, low cost, and environmental benignity of sodium. In response to the ever‐increasing development for these technologies, an intensive exploration for appropriate electrode materials with high energy density is still underway. This Progress Report highlights the recent research in the investigation of amorphous materials, whose isotropic physical and chemical properties can provide multiple pathways for ions and facilitate ion diffusion. This Progress Report focuses on sodium‐ion batteries, but it is hoped that the engineering strategies may provide guidance on further research and design of functional materials for both sodium and potassium‐ion batteries.
Amorphous materials appear to be promising energy storage materials for room‐temperature rechargeable sodium‐ion batteries. The recent progress in this field is discussed in this progress report, both in cathode and anode electrodes. The isotropic physical and chemical properties resulting from the unique long‐range disordered and short‐range ordered structure of amorphous materials can provide various advantages for ion diffusion.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201800639</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>amorphous ; Amorphous materials ; Chemical properties ; Design engineering ; Electrode materials ; Electrodes ; energy storage ; Flux density ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Organic chemistry ; Progress reports ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Storage batteries</subject><ispartof>Advanced materials interfaces, 2018-10, Vol.5 (19), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3569-ec3b33c870ced1e3e88b8b69218419865deb91af6074d3d9222524aaf356a0e73</citedby><cites>FETCH-LOGICAL-c3569-ec3b33c870ced1e3e88b8b69218419865deb91af6074d3d9222524aaf356a0e73</cites><orcidid>0000-0001-6413-0689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201800639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201800639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Dongxue</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><title>From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries</title><title>Advanced materials interfaces</title><description>Room‐temperature rechargeable sodium‐ion batteries appear to be promising alternatives for grid and other storage applications to lithium‐ion batteries because of the natural abundance, low cost, and environmental benignity of sodium. In response to the ever‐increasing development for these technologies, an intensive exploration for appropriate electrode materials with high energy density is still underway. This Progress Report highlights the recent research in the investigation of amorphous materials, whose isotropic physical and chemical properties can provide multiple pathways for ions and facilitate ion diffusion. This Progress Report focuses on sodium‐ion batteries, but it is hoped that the engineering strategies may provide guidance on further research and design of functional materials for both sodium and potassium‐ion batteries.
Amorphous materials appear to be promising energy storage materials for room‐temperature rechargeable sodium‐ion batteries. The recent progress in this field is discussed in this progress report, both in cathode and anode electrodes. The isotropic physical and chemical properties resulting from the unique long‐range disordered and short‐range ordered structure of amorphous materials can provide various advantages for ion diffusion.</description><subject>amorphous</subject><subject>Amorphous materials</subject><subject>Chemical properties</subject><subject>Design engineering</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>energy storage</subject><subject>Flux density</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Organic chemistry</subject><subject>Progress reports</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURoMoWGq3rgdcp85Pk8y4izW1hRYFdT1Mkps2JcnUmaTSXR_BZ_RJnFpRd67uhe-ce-HzvEuChwRjeq3yuhxSTDjGIRMnXo8SEfoRC_Dpn_3cG1i7xhgTQgnlrOftJ0bXaGx2tlVVVTaAWo3iWpvNSnf2BsUNSooCsrbcAoq30HRfRNIsHQsGTcvl6mP__gim0KZWTQYoqRxudA5ooVowpaosciF60nnZ1Q6e6QbdqvaQgb3wzgpHwOB79r2XSfI8nvrzh_vZOJ77GQtC4UPGUsYyHuEMcgIMOE95GgpK-IgIHgY5pIKoIsTRKGe5oJQGdKRU4WyFIWJ97-p4d2P0awe2lWvdmca9lJSQiAQkENRRwyOVGW2tgUJuTFkrs5MEy0PR8lC0_CnaCeIovJUV7P6hZXy3mP26n-dIhHQ</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Wei, Zhixuan</creator><creator>Wang, Dongxue</creator><creator>Yang, Xu</creator><creator>Wang, Chunzhong</creator><creator>Chen, Gang</creator><creator>Du, Fei</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></search><sort><creationdate>20181009</creationdate><title>From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries</title><author>Wei, Zhixuan ; Wang, Dongxue ; Yang, Xu ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3569-ec3b33c870ced1e3e88b8b69218419865deb91af6074d3d9222524aaf356a0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amorphous</topic><topic>Amorphous materials</topic><topic>Chemical properties</topic><topic>Design engineering</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>energy storage</topic><topic>Flux density</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Organic chemistry</topic><topic>Progress reports</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Dongxue</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhixuan</au><au>Wang, Dongxue</au><au>Yang, Xu</au><au>Wang, Chunzhong</au><au>Chen, Gang</au><au>Du, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries</atitle><jtitle>Advanced materials interfaces</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>5</volume><issue>19</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Room‐temperature rechargeable sodium‐ion batteries appear to be promising alternatives for grid and other storage applications to lithium‐ion batteries because of the natural abundance, low cost, and environmental benignity of sodium. In response to the ever‐increasing development for these technologies, an intensive exploration for appropriate electrode materials with high energy density is still underway. This Progress Report highlights the recent research in the investigation of amorphous materials, whose isotropic physical and chemical properties can provide multiple pathways for ions and facilitate ion diffusion. This Progress Report focuses on sodium‐ion batteries, but it is hoped that the engineering strategies may provide guidance on further research and design of functional materials for both sodium and potassium‐ion batteries.
Amorphous materials appear to be promising energy storage materials for room‐temperature rechargeable sodium‐ion batteries. The recent progress in this field is discussed in this progress report, both in cathode and anode electrodes. The isotropic physical and chemical properties resulting from the unique long‐range disordered and short‐range ordered structure of amorphous materials can provide various advantages for ion diffusion.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.201800639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2018-10, Vol.5 (19), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2117151592 |
source | Access via Wiley Online Library |
subjects | amorphous Amorphous materials Chemical properties Design engineering Electrode materials Electrodes energy storage Flux density Ion diffusion Lithium Lithium-ion batteries Organic chemistry Progress reports Rechargeable batteries Sodium Sodium-ion batteries Storage batteries |
title | From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Crystalline%20to%20Amorphous:%20An%20Effective%20Avenue%20to%20Engineer%20High%E2%80%90Performance%20Electrode%20Materials%20for%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Wei,%20Zhixuan&rft.date=2018-10-09&rft.volume=5&rft.issue=19&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201800639&rft_dat=%3Cproquest_cross%3E2117151592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117151592&rft_id=info:pmid/&rfr_iscdi=true |