A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes

The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2018-10, Vol.5 (19), p.n/a
Hauptverfasser: Qi, Li‐Ya, Shang, Luoran, Chen, Xi, Ye, Luhan, Zhang, Weixia, Feng, Peijian, Zou, Wei, Cao, Naizhen, Zhou, Heng‐Hui, Weitz, David A., Li, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced materials interfaces
container_volume 5
creator Qi, Li‐Ya
Shang, Luoran
Chen, Xi
Ye, Luhan
Zhang, Weixia
Feng, Peijian
Zou, Wei
Cao, Naizhen
Zhou, Heng‐Hui
Weitz, David A.
Li, Xin
description The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates. A novel cost‐effective and versatile dip‐coating method is used to make 3D conductive frameworks based on various substrates with different geometries. The as‐coated 3D framework shows the capability to prevent the growth of lithium dendrite, and the method will serve as an extremely versatile platform to build a 3D scaffold on virtually all types of materials, including insulators.
doi_str_mv 10.1002/admi.201800807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117151535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117151535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3967-bcbe38dcbefa18e4e1695c3b8dd30d58bca23b98d3ede3c8cc3ac3e0af14e7523</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxujiQS5em7iedjXMtYdFxAlgXhAvTZd-6ZDRrHtJPz3jmDUm5f3I_l830s-hFwDGwJj_Fbbph5yBpIxybIz0uOQj5NMpOz8z3xJBiGsGWMAHLgUPbIq6Av6oGO9QbqKXkd8PdDo6EyXvjbdSsWUTtzWtibWn0hnXje4d_490Mp5uqjjW902dIlRb2ixdRbDFbmo9Cbg4Lv3yfPs7mnykCwe7-eTYpEYkY-zpDQlCmm7WmmQOEIY56kRpbRWMJvK0mguylxagRaFkcYIbQQyXcEIs5SLPrk53d1599FiiGrtWr_tXioOkEEKqUg7aniijHcheKzUzteN9gcFTB3dqaM79eOuC-SnwL5zcviHVsV0Of_NfgEsAHNe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117151535</pqid></control><display><type>article</type><title>A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Li‐Ya ; Shang, Luoran ; Chen, Xi ; Ye, Luhan ; Zhang, Weixia ; Feng, Peijian ; Zou, Wei ; Cao, Naizhen ; Zhou, Heng‐Hui ; Weitz, David A. ; Li, Xin</creator><creatorcontrib>Qi, Li‐Ya ; Shang, Luoran ; Chen, Xi ; Ye, Luhan ; Zhang, Weixia ; Feng, Peijian ; Zou, Wei ; Cao, Naizhen ; Zhou, Heng‐Hui ; Weitz, David A. ; Li, Xin</creatorcontrib><description>The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates. A novel cost‐effective and versatile dip‐coating method is used to make 3D conductive frameworks based on various substrates with different geometries. The as‐coated 3D framework shows the capability to prevent the growth of lithium dendrite, and the method will serve as an extremely versatile platform to build a 3D scaffold on virtually all types of materials, including insulators.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201800807</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>3D conductive framework ; Coating effects ; Copper ; Cu coating technique ; dendrite suppression ; Dendritic structure ; Glass fibers ; Immersion coating ; Lithium batteries ; lithium metal anodes ; Materials selection ; Metal foams ; Nickel ; Substrates ; Test procedures</subject><ispartof>Advanced materials interfaces, 2018-10, Vol.5 (19), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3967-bcbe38dcbefa18e4e1695c3b8dd30d58bca23b98d3ede3c8cc3ac3e0af14e7523</citedby><cites>FETCH-LOGICAL-c3967-bcbe38dcbefa18e4e1695c3b8dd30d58bca23b98d3ede3c8cc3ac3e0af14e7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201800807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201800807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qi, Li‐Ya</creatorcontrib><creatorcontrib>Shang, Luoran</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ye, Luhan</creatorcontrib><creatorcontrib>Zhang, Weixia</creatorcontrib><creatorcontrib>Feng, Peijian</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Cao, Naizhen</creatorcontrib><creatorcontrib>Zhou, Heng‐Hui</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes</title><title>Advanced materials interfaces</title><description>The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates. A novel cost‐effective and versatile dip‐coating method is used to make 3D conductive frameworks based on various substrates with different geometries. The as‐coated 3D framework shows the capability to prevent the growth of lithium dendrite, and the method will serve as an extremely versatile platform to build a 3D scaffold on virtually all types of materials, including insulators.</description><subject>3D conductive framework</subject><subject>Coating effects</subject><subject>Copper</subject><subject>Cu coating technique</subject><subject>dendrite suppression</subject><subject>Dendritic structure</subject><subject>Glass fibers</subject><subject>Immersion coating</subject><subject>Lithium batteries</subject><subject>lithium metal anodes</subject><subject>Materials selection</subject><subject>Metal foams</subject><subject>Nickel</subject><subject>Substrates</subject><subject>Test procedures</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxujiQS5em7iedjXMtYdFxAlgXhAvTZd-6ZDRrHtJPz3jmDUm5f3I_l830s-hFwDGwJj_Fbbph5yBpIxybIz0uOQj5NMpOz8z3xJBiGsGWMAHLgUPbIq6Av6oGO9QbqKXkd8PdDo6EyXvjbdSsWUTtzWtibWn0hnXje4d_490Mp5uqjjW902dIlRb2ixdRbDFbmo9Cbg4Lv3yfPs7mnykCwe7-eTYpEYkY-zpDQlCmm7WmmQOEIY56kRpbRWMJvK0mguylxagRaFkcYIbQQyXcEIs5SLPrk53d1599FiiGrtWr_tXioOkEEKqUg7aniijHcheKzUzteN9gcFTB3dqaM79eOuC-SnwL5zcviHVsV0Of_NfgEsAHNe</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Qi, Li‐Ya</creator><creator>Shang, Luoran</creator><creator>Chen, Xi</creator><creator>Ye, Luhan</creator><creator>Zhang, Weixia</creator><creator>Feng, Peijian</creator><creator>Zou, Wei</creator><creator>Cao, Naizhen</creator><creator>Zhou, Heng‐Hui</creator><creator>Weitz, David A.</creator><creator>Li, Xin</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181009</creationdate><title>A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes</title><author>Qi, Li‐Ya ; Shang, Luoran ; Chen, Xi ; Ye, Luhan ; Zhang, Weixia ; Feng, Peijian ; Zou, Wei ; Cao, Naizhen ; Zhou, Heng‐Hui ; Weitz, David A. ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3967-bcbe38dcbefa18e4e1695c3b8dd30d58bca23b98d3ede3c8cc3ac3e0af14e7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D conductive framework</topic><topic>Coating effects</topic><topic>Copper</topic><topic>Cu coating technique</topic><topic>dendrite suppression</topic><topic>Dendritic structure</topic><topic>Glass fibers</topic><topic>Immersion coating</topic><topic>Lithium batteries</topic><topic>lithium metal anodes</topic><topic>Materials selection</topic><topic>Metal foams</topic><topic>Nickel</topic><topic>Substrates</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Li‐Ya</creatorcontrib><creatorcontrib>Shang, Luoran</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ye, Luhan</creatorcontrib><creatorcontrib>Zhang, Weixia</creatorcontrib><creatorcontrib>Feng, Peijian</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Cao, Naizhen</creatorcontrib><creatorcontrib>Zhou, Heng‐Hui</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Li‐Ya</au><au>Shang, Luoran</au><au>Chen, Xi</au><au>Ye, Luhan</au><au>Zhang, Weixia</au><au>Feng, Peijian</au><au>Zou, Wei</au><au>Cao, Naizhen</au><au>Zhou, Heng‐Hui</au><au>Weitz, David A.</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes</atitle><jtitle>Advanced materials interfaces</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>5</volume><issue>19</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates. A novel cost‐effective and versatile dip‐coating method is used to make 3D conductive frameworks based on various substrates with different geometries. The as‐coated 3D framework shows the capability to prevent the growth of lithium dendrite, and the method will serve as an extremely versatile platform to build a 3D scaffold on virtually all types of materials, including insulators.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201800807</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2018-10, Vol.5 (19), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2117151535
source Wiley Online Library Journals Frontfile Complete
subjects 3D conductive framework
Coating effects
Copper
Cu coating technique
dendrite suppression
Dendritic structure
Glass fibers
Immersion coating
Lithium batteries
lithium metal anodes
Materials selection
Metal foams
Nickel
Substrates
Test procedures
title A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Versatile%20Strategy%20to%20Fabricate%203D%20Conductive%20Frameworks%20for%20Lithium%20Metal%20Anodes&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Qi,%20Li%E2%80%90Ya&rft.date=2018-10-09&rft.volume=5&rft.issue=19&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201800807&rft_dat=%3Cproquest_cross%3E2117151535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117151535&rft_id=info:pmid/&rfr_iscdi=true